1
|
Sarvutiene J, Ramanavicius A, Ramanavicius S, Prentice U. Advances in Duchenne Muscular Dystrophy: Diagnostic Techniques and Dystrophin Domain Insights. Int J Mol Sci 2025; 26:3579. [PMID: 40332074 PMCID: PMC12027135 DOI: 10.3390/ijms26083579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Abnormalities in X chromosomes, either numerical or structural, cause X-linked disorders, such as Duchenne muscular dystrophy (DMD). Recent molecular and cytogenetic techniques can help identify DMD gene mutations. The accurate diagnosis of Duchenne is crucial, directly impacting patient treatment management, genetics, and the establishment of effective prevention strategies. This review provides an overview of X chromosomal disorders affecting Duchenne and discusses how mutations in Dystrophin domains can impact detection accuracy. Firstly, the efficiency and use of cytogenetic and molecular techniques for the genetic diagnosis of Duchenne disease have, thus, become increasingly important. Secondly, artificial intelligence (AI) will be instrumental in developing future therapies by enabling the aggregation and synthesis of extensive and heterogeneous datasets, thereby elucidating underlying molecular mechanisms. However, despite advances in diagnostic technology, understanding the role of Dystrophin in Duchenne disease remains a challenge. Therefore, this review aims to synthesize this complex information to significantly advance the understanding of DMD and how it could affect patient care.
Collapse
Affiliation(s)
- Julija Sarvutiene
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
| | - Arunas Ramanavicius
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
| | - Urte Prentice
- State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (J.S.); (A.R.); (S.R.)
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
- Department of Personalised Medicine, State Research Institute Center for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania
| |
Collapse
|
2
|
Lu W, Xie X, Lan X, Wu P, Peng H, He J, Zhong L, Liu X, Deng Z, Tan Z, Wu A, Shi L, Huang Y. An electrochemical immunosensor for the detection of Glypican-3 based on enzymatic ferrocene-tyramine deposition reaction. Biosens Bioelectron 2023; 225:115081. [PMID: 36680969 DOI: 10.1016/j.bios.2023.115081] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
An ultrasensitive electrochemical immunosensor based on signal amplification of the deposition of the electroactive ferrocene-tyramine (Fc-Tyr) molecule, catalyzed by horseradish peroxidase (HRP), was constructed for the detection of the liver cancer marker Glypican-3 (GPC3). Functional electroactive molecule Fc-Tyr is reported to exhibit both the enzymatic cascade catalytic activity of tyramine signal amplification (TSA) and the excellent redox properties of ferrocene. In terms of design, the low matrix effects inherent in using the magnetic bead platforms, a quasi-homogeneous system, allowed capturing the target protein GPC3 without sample pretreatment, and loading HRP to trigger the TSA, which induced a large amount of Fc-Tyr deposited on the electrode surface layer by layer as a signal probe for the detection of GPC3. The concept of Fc-Tyr as an electroactive label was validated, GPC3 biosensor exhibited high selectivity and sensitivity to GPC3 in the range of 0.1 ng mL-1-1 μg mL-1. Finally, the sensor was used simultaneously with ELISA to assess GPC3 levels in the serum of clinical liver cancer patients, and the results showed consistency, with a recovery of 98.33-105.35% and a relative standard deviation (RSD) of 4.38-8.18%, providing a theoretical basis for achieving portable, rapid and point of care testing (POCT) of tumor markers.
Collapse
Affiliation(s)
- Wenxi Lu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xianli Lan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hongmei Peng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, 415000, China
| | - Zhenkai Tan
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Aiqun Wu
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China.
| | - Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Pharmacy, Guangxi Medical University, Nanning, 530021, China; The First People's Hospital of Changde City, Changde, 415000, China.
| |
Collapse
|
3
|
Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem 2023; 415:1065-1085. [PMID: 36289102 DOI: 10.1007/s00216-022-04388-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.
Collapse
|
5
|
Strachan BC, Sloane HS, Lee JC, Leslie DC, Landers JP. Investigation of the DNA target design parameters for effective hybridization-induced aggregation of particles for the sequence-specific detection of DNA. Analyst 2015; 140:2008-15. [PMID: 25673152 DOI: 10.1039/c4an02101k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In a recent publication, we presented a label-free method for the detection of specific DNA sequences through the hybridization-induced aggregation (HIA) of a pair of oligonucleotide-adducted magnetic particles. Here we show, through the use of modified hardware, that we are able to simultaneously analyze multiple (4) samples, and detect a 26-mer ssDNA sequence at femtomolar concentrations in minutes. As such, this work represents an improvement in throughput and a 100-fold improvement in sensitivity, compared to that reported previously. Here, we also investigate the design parameters of the target sequence, in an effort to maximize the sensitivity of HIA and to use as a guide in future applications of this work. Modifications were made to the original 26-mer oligonucleotide sequence to evaluate the effects of: (1) non-complementary flanking bases, (2) target sequence length, and (3) single base mismatches on aggregation response. The aggregation response decreased as the number of the non-complementary flanking bases increased, with only a five base addition lowering the LOD by four orders of magnitude. Low sensitivity was observed with short sequences of 6 and 10 complementary bases, which were only detectable at micromolar concentrations. Target sequences with 20, 26 or 32 complementary bases provided the greatest sensitivity and were detectable at femtomolar concentrations. Additionally, HIA could effectively differentiate sequences that were fully complementary from those containing 1, 2 or 3 single base mismatches at micromolar concentrations. The robustness of the HIA system to other buffer components was explored with nine potential assay interferents that could affect hybridization (aggregation) or falsely induce aggregation. Of these, purified BSA and lysed whole blood induced a false aggregation. None of the interferents inhibited aggregation when the hybridizing target was added. Having delineated the fundamental parameters affecting HIA-target hybridization, and demonstrating that HIA had the selectivity to detect single base mismatches, this fluor-free end-point detection has the potential to become a powerful tool for microfluidic DNA detection.
Collapse
Affiliation(s)
- Briony C Strachan
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | | | |
Collapse
|
7
|
Yang AHJ, Hsieh K, Patterson AS, Ferguson BS, Eisenstein M, Plaxco KW, Soh HT. Accurate zygote-specific discrimination of single-nucleotide polymorphisms using microfluidic electrochemical DNA melting curves. Angew Chem Int Ed Engl 2014; 53:3163-7. [PMID: 24520069 PMCID: PMC3992926 DOI: 10.1002/anie.201310059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 01/17/2023]
Abstract
We report the first electrochemical system for the detection of single-nucleotide polymorphisms (SNPs) that can accurately discriminate homozygous and heterozygous genotypes using microfluidics technology. To achieve this, our system performs real-time melting-curve analysis of surface-immobilized hybridization probes. As an example, we used our sensor to analyze two SNPs in the apolipoprotein E (ApoE) gene, where homozygous and heterozygous mutations greatly affect the risk of late-onset Alzheimer's disease. Using probes specific for each SNP, we simultaneously acquired melting curves for probe-target duplexes at two different loci and thereby accurately distinguish all six possible ApoE allele combinations. Since the design of our device and probes can be readily adapted for targeting other loci, we believe that our method offers a modular platform for the diagnosis of SNP-based diseases and personalized medicine.
Collapse
Affiliation(s)
- Allen H. J. Yang
- Department of Mechanical Engineering, University of California Santa Barbara (USA)
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, University of California Santa Barbara (USA)
| | - Adriana S. Patterson
- Department of Chemistry and Biochemistry and Biomolecular Science and Engineering Program, University of California, Santa Barbara (USA)
| | - B. Scott Ferguson
- Department of Mechanical Engineering, University of California Santa Barbara (USA)
| | - Michael Eisenstein
- Department of Mechanical Engineering, University of California Santa Barbara (USA)
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry and Biomolecular Science and Engineering Program, University of California, Santa Barbara (USA)
| | - H. Tom Soh
- Materials Department and Department of Mechanical Engineering University of California, Santa Barbara, Santa Barbara, CA 93106 (USA)
- Department of Mechanical Engineering, University of California Santa Barbara (USA)
| |
Collapse
|
8
|
Chin YT, Liao EC, Wu CC, Wang GJ, Tsai JJ. Detection of haplotype mutations of the MD-2 gene promoter associated with Der p2-induced allergy using a nanostructured biosensor. Int J Nanomedicine 2014; 9:1403-12. [PMID: 24648737 PMCID: PMC3958545 DOI: 10.2147/ijn.s59151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group 2 allergens (Der p2) have been reported to be a major cause of the human immune response to dust mite allergens. In this study, we have demonstrated for the first time the effective differentiation between haplotype mutation and normal genes in the MD-2 gene promoter using a nanostructured biosensor. A 70-mer gene fragment containing the haplotype of two single nucleotide polymorphisms in the MD-2 gene promoter region was used as a probe to detect haplotype mutations associated with Der p2-induced allergy. Discrimination was achieved using electrochemical impedance spectroscopy. The discrimination experiments employed 30 haplotype mutation samples and 30 normal target samples. The haplotype mutation samples and normal target samples could be clearly discriminated, even using samples produced by a five-cycle polymerase chain reaction process. The time and cost of sample preparation for the polymerase chain reaction process in the clinical setting can thus be reduced.
Collapse
Affiliation(s)
- Yu-Ting Chin
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - En-Chih Liao
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Che Wu
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Gou-Jen Wang
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan ; Graduate Institute of Biomedical Engineering, Taichung, Taiwan ; PhD Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Jaw-Ji Tsai
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Mazouz Z, Fourati N, Zerrouki C, Ommezine A, Rebhi L, Yaakoubi N, Kalfat R, Othmane A. Discriminating DNA mismatches by electrochemical and gravimetric techniques. Biosens Bioelectron 2013; 48:293-8. [PMID: 23714847 DOI: 10.1016/j.bios.2013.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/07/2023]
Abstract
A silicon nitride functionalized electrode and a 104 MHz lithium tantalate (LiTaO₃) surface acoustic wave (SAW) sensor have been used to investigate target-probe recognition processes. Electrochemical and gravimetric measurements have been considered to monitor hybridization of single base mismatch (SBM) in synthetic oligonucleotides and single-nucleotide polymorphisms ApoE in real clinical genotypes. Obvious discrimination of SBM in nucleotides has been shown by both gravimetric and electrochemical techniques, without labeling nor amplification. Investigations on mismatches nature and position have also been considered. For guanine-adenine (GA), guanine-thymine (GT) and guanine-guanine (GG) mismatches, the sensors responses present a dependence upon positions. Considering the capacitance variations and hybridization rates, results showed that gravimetric transduction is more sensitive than electrochemical one. Moreover, the highest value of GT hybridization rate (in the middle position) was found in accordance with the nearest-neighbor model, where the considered configuration appears as the most thermodynamically stable. For the real samples, where the electrochemical transduction, by combining capacitance and flat-band potential measurements, were found more sensitive, the results show that the realized sensor permits an unambiguous discrimination of recognition between fully complementary, non-complementary and single base mismatched targets, and even between the combination of differently matched strands.
Collapse
Affiliation(s)
- Zouhour Mazouz
- Laboratoire Méthodes et Techniques d'Analyse, INRAP, BiotechPole, 2020 Sidi-Thabet, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|