1
|
Kim S, Haque AMJ, Ahn K, Wee Y, Hwang H, Huh Y, Bang J, Kim J, Kim J. Controlled growth of redox polymer network on single enzyme molecule for stable and sensitive enzyme electrode. Biosens Bioelectron 2022; 215:114576. [PMID: 35863134 DOI: 10.1016/j.bios.2022.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
The electrochemical applications of enzymes are often hampered by poor enzyme stability and low electron conductivity. In this work, a novel enzyme nanogel based on atom transfer radical polymerization (ATRP) has been developed for highly sensitive detection of glucose based on ferrocene (Fc) embedded in crosslinked polymer network nanogel. Enzyme surfaces are successively modified with Br initiator, and then in situ atom transfer radical polymerization (ATRP) was performed to build up crosslinked polyacrylamide network. The resulting single enzyme nanogel (ATRP-SEG) is uniform in size fairly. ATRP-SEG reveals bi-phasic inactivation, and the half-life of stable ATRP-SEG after 18-day incubation at 50 °C is 47 days, which is 197 times longer than that of free Gox (5.7 h). By introducing a ferrocene (Fc) containing redox polymer, poly(acrylamide-co-vinylferrocene), the half-life of Fc-ATRP-SEG after 18-day incubation at 50 °C is 49 days. Fc-ATRP-SEG is used for preparation of glucose-sensing electrode, and the sensitivity of Fc-ATRP-SEG electrode is 111 μA cm-2 mM-1, which is 366 and 1270 times higher than those of free GOx (0.303 μA cm-2 mM-1) and ATRP-SEG (0.0874 μA cm-2 mM-1), respectively. Fc-ATRP-SEG electrode maintained 90% of initial current density under 4 °C storage condition and repetitive usages every day for 7 days. Even the electrode repeatedly used in continuous harsh condition (250 rpm, room temperature), the current density maintained 96% after 12 h incubation at operational condition.
Collapse
Affiliation(s)
- Seungkeun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | | | - Kyungmin Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Youngho Wee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Hwang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoon Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Kuznetsova LS, Arlyapov VA, Kamanina OA, Lantsova EA, Tarasov SE, Reshetilov AN. Development of Nanocomposite Materials Based on Conductive Polymers for Using in Glucose Biosensor. Polymers (Basel) 2022; 14:polym14081543. [PMID: 35458293 PMCID: PMC9026068 DOI: 10.3390/polym14081543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/11/2022] Open
Abstract
Electropolymerized neutral red, thionine, and aniline were used as part of hybrid nanocomposite conductive polymers, to create an amperometric reagent-less biosensor for glucose determination. The structure of the obtained polymers was studied using infrared (IR) spectroscopy and scanning electron microscopy. Electrochemical characteristics were studied by cyclic voltammetry and impedance spectroscopy. It was shown that, from the point of view of both the rate of electron transfer to the electrode, and the rate of interaction with the active center of glucose oxidase (GOx), the most promising is a new nanocomposite based on poly(neutral red) (pNR) and thermally expanded graphite (TEG). The sensor based on the created nanocomposite material is characterized by a sensitivity of 1000 ± 200 nA × dm3/mmol; the lower limit of the determined glucose concentrations is 0.006 mmol/L. The glucose biosensor based on this nanocomposite was characterized by a high correlation (R2 = 0.9828) with the results of determining the glucose content in human blood using the standard method. Statistical analysis did not reveal any deviations of the results obtained using this biosensor and the reference method. Therefore, the developed biosensor can be used as an alternative to the standard analysis method and as a prototype for creating sensitive and accurate glucometers, as well as biosensors to assess other metabolites.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Vyacheslav A. Arlyapov
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
- Correspondence:
| | - Olga A. Kamanina
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Elizaveta A. Lantsova
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin pr. 92, 300012 Tula, Russia; (L.S.K.); (O.A.K.); (E.A.L.)
| | - Sergey E. Tarasov
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, pr. Science, 5, 142290 Moscow, Russia; (S.E.T.); (A.N.R.)
| | - Anatoly N. Reshetilov
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, pr. Science, 5, 142290 Moscow, Russia; (S.E.T.); (A.N.R.)
| |
Collapse
|
3
|
Dmitrieva MV, Shishov IN, Shmalii SV, Myazin VD, Bazhenov AY, Gerasimova EV, Zolotukhina EV. Kinetics of Mediated Bioelectrocatalytic Oxidation of Glucose by Protein Extracts of Escherichia coli. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor. Enzyme Microb Technol 2020; 143:109706. [PMID: 33375974 DOI: 10.1016/j.enzmictec.2020.109706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023]
Abstract
This work investigated the use of redox-active polymers based on bovine serum albumin and chitosan, covalently bound to mediators neutral red and ferrocene and containing carbon nanotubes, for immobilization of Paracoccus yeei VKM B-3302 bacteria. The structures of produced polymers were studied by IR spectroscopy and scanning electron microscopy. Cyclic voltammetry and impedance spectroscopy found the electrochemical characteristics of the investigated systems: the heterogeneous electron transfer rate constant, the constant of the rate of interaction with P. yeei bacteria and the impedance. The systems containing carbon nanotubes and ferrocene-based redox-active polymer proved to be the most promising. Biosensors formed using the hybrid polymers had a high sensitivity with the lower boundary of 0.1 mg/dm3 of the detected BOD5 concentrations and a high correlation (R = 0.9916) with the standard BOD assay of surface water samples.
Collapse
|
5
|
Verho O, Bäckvall JE. Nanocatalysis Meets Biology. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Pappa AM, Parlak O, Scheiblin G, Mailley P, Salleo A, Owens RM. Organic Electronics for Point-of-Care Metabolite Monitoring. Trends Biotechnol 2017; 36:45-59. [PMID: 29196057 DOI: 10.1016/j.tibtech.2017.10.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/26/2017] [Accepted: 10/31/2017] [Indexed: 01/14/2023]
Abstract
In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities. We finish by describing a future trend for in vivo, implantable sensors, which aims to build on current progress from sensing in biological fluids ex vivo.
Collapse
Affiliation(s)
- Anna-Maria Pappa
- Department of Bioelectronics, École Nationale Supérieure des Mines, Centre Microélectronique de Provence (CMP)-École Nationale Supérieure des Mines de Saint-Étienne (EMSE), Microélectronique et Objets Communicants (MOC), 13541 Gardanne, France; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 OAS, UK; Equal contributions
| | - Onur Parlak
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA; Equal contributions
| | - Gaetan Scheiblin
- Commissariat à l'Energie Atomique (CEA), Laboratoire d'Électronique des Technologies de l'Information (LETI), MINATEC Campus, 38054 Grenoble, France; Equal contributions
| | - Pascal Mailley
- Commissariat à l'Energie Atomique (CEA), Laboratoire d'Électronique des Technologies de l'Information (LETI), MINATEC Campus, 38054 Grenoble, France
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Roisin M Owens
- Department of Bioelectronics, École Nationale Supérieure des Mines, Centre Microélectronique de Provence (CMP)-École Nationale Supérieure des Mines de Saint-Étienne (EMSE), Microélectronique et Objets Communicants (MOC), 13541 Gardanne, France; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 OAS, UK.
| |
Collapse
|
7
|
Sekretaryova AN, Eriksson M, Turner AP. Bioelectrocatalytic systems for health applications. Biotechnol Adv 2016; 34:177-97. [DOI: 10.1016/j.biotechadv.2015.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
|
8
|
Ravenna Y, Xia L, Gun J, Mikhaylov AA, Medvedev AG, Lev O, Alfonta L. Biocomposite based on reduced graphene oxide film modified with phenothiazone and flavin adenine dinucleotide-dependent glucose dehydrogenase for glucose sensing and biofuel cell applications. Anal Chem 2015; 87:9567-71. [PMID: 26334692 DOI: 10.1021/acs.analchem.5b02949] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel composite material for the encapsulation of redox enzymes was prepared. Reduced graphene oxide film with adsorbed phenothiazone was used as a highly efficient composite for electron transfer between flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and electrodes. Measured redox potential for glucose oxidation was lower than 0 V vs Ag/AgCl electrode. The fabricated biosensor showed high sensitivity of 42 mA M(-1) cm(-2), a linear range of glucose detection of 0.5-12 mM, and good reproducibility and stability as well as high selectivity for different interfering compounds. In a semibiofuel cell configuration, the hybrid film generated high power output of 345 μW cm(-2). These results demonstrate a promising potential for this composition in various bioelectronic applications.
Collapse
Affiliation(s)
- Yehonatan Ravenna
- Department of Life Sciences and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Lin Xia
- Department of Life Sciences and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| | - Jenny Gun
- The Casali Institute, The Institute of Chemistry, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Alexey A Mikhaylov
- The Casali Institute, The Institute of Chemistry, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Alexander G Medvedev
- The Casali Institute, The Institute of Chemistry, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Ovadia Lev
- The Casali Institute, The Institute of Chemistry, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Lital Alfonta
- Department of Life Sciences and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
Zhang D, Jiang J, Chen J, Zhang Q, Lu Y, Yao Y, Li S, Logan Liu G, Liu Q. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection. Biosens Bioelectron 2015; 70:81-8. [DOI: 10.1016/j.bios.2015.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 01/12/2023]
|
10
|
Wang Y, Li X, Cao W, Li Y, Li H, Du B, Wei Q. Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded toluidine blue/gold nanoparticles decorated KIT-6/carboxymethyl chitosan/ionic liquids as signal labels. Biosens Bioelectron 2014; 61:618-24. [DOI: 10.1016/j.bios.2014.05.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
11
|
Sekretaryova AN, Beni V, Eriksson M, Karyakin AA, Turner APF, Vagin MY. Cholesterol self-powered biosensor. Anal Chem 2014; 86:9540-7. [PMID: 25164485 DOI: 10.1021/ac501699p] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M(-1) cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.
Collapse
Affiliation(s)
- Alina N Sekretaryova
- Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Venckus T, Celiešiūtė R, Radzevič A, Rakickas T, Vaitekonis Š, Ruželė Ž, Pauliukaite R. Application of Polyfolates in the Development of Electrochemical Glucose Biosensors. ELECTROANAL 2014. [DOI: 10.1002/elan.201400293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|