1
|
Probing hyper-negatively supercoiled mini-circles with nucleases and DNA binding proteins. PLoS One 2018; 13:e0202138. [PMID: 30114256 PMCID: PMC6095550 DOI: 10.1371/journal.pone.0202138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
It is well accepted that the introduction of negative supercoils locally unwinds the DNA double helix, influencing thus the activity of proteins. Despite the use of recent methods of molecular dynamics simulations to model the DNA supercoiling-induced DNA deformation, the precise extent and location of unpaired bases induced by the negative supercoiling have never been investigated at the nucleotide level. Our goals in this study were to use radiolabeled double-stranded DNA mini-circles (dsMCs) to locate the unpaired bases on dsMCs whose topology ranged from relaxed to hyper-negatively supercoiled states, and to characterize the binding of proteins involved in the DNA metabolism. Our results show that the Nuclease SI is nearly ten times more active on hyper-negatively supercoiled than relaxed DNA. The structural changes responsible for this stimulation of activity were mapped for the first time with a base pair resolution and shown to be subtle and distributed along the entire sequence. As divalent cations modify the DNA topology, our binding studies were conducted with or without magnesium. Without magnesium, the dsMCs topoisomers mostly differ by their twist. Under these conditions, the Escherichia coli topoisomerase I weakly binds relaxed dsMCs and exhibits a stronger binding on negatively and hyper-negatively supercoiled dsMCs than relaxed dsMCs, with no significant difference in the binding activity among the supercoiled topoisomers. For the human replication protein A (hRPA), the more negatively supercoiled is the DNA, the better the binding, illustrating the twist-dependent binding activity for this protein. The presence of magnesium permits the dsMCs to writhe upon introduction of negative supercoiling and greatly modifies the binding properties of the hRPA and Escherichia coli SSB on dsMCs, indicating a magnesium-dependent DNA binding behavior. Finally, our experiments that probe the topology of the DNA in the hRPA-dsMC complexes show that naked and hRPA-bound dsMCs have the same topology.
Collapse
|
2
|
Chisty LT, Quaglia D, Webb MR. Fluorescent single-stranded DNA-binding protein from Plasmodium falciparum as a biosensor for single-stranded DNA. PLoS One 2018; 13:e0193272. [PMID: 29466468 PMCID: PMC5821389 DOI: 10.1371/journal.pone.0193272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2018] [Indexed: 11/30/2022] Open
Abstract
Single-stranded DNA (ssDNA) is a product of many cellular processes that involve double-stranded DNA, for example during DNA replication and repair, and is formed transiently in many others. Measurement of ssDNA formation is fundamental for understanding many such processes. The availability of a fluorescent biosensor for the determination of single-stranded DNA provides an important route to achieve this. Single-stranded DNA binding proteins (SSBs) protect ssDNA from degradation, but can be displaced to allow processing of the ssDNA. Their tight binding of ssDNA means that they are very good candidates for the development of a biosensor. Previously, the single stranded DNA binding protein from Escherichia coli, labeled with a fluorophore, (DCC-EcSSB) was developed and used for this purpose. However, the multiple binding modes of this protein meant that interpretation of DCC-EcSSB fluorescence was potentially complex in terms of determining the amount of ssDNA. Here, we present an improved biosensor, developed using the tetrameric SSB from Plasmodium falciparum as a new scaffold for fluorophore attachment. Each subunit of this tetrameric SSB was labeled with a diethylaminocoumarin fluorophore at a single site on its surface, such that there is a very large, 20-fold, fluorescence increase when it binds to ssDNA. This adduct can be used as a biosensor to report ssDNA formation. Because SSB from this organism has a single mode of binding ssDNA, namely 65-70 bases per tetramer, over a wide range of conditions, the fluorescent SSB allows simple quantitation of ssDNA. The binding is fast, possibly diffusion controlled, and tight (dissociation constant for DCC-PfSSB <5 pM). Its suitability for real-time assays of ssDNA formation was demonstrated by measurement of AddAB helicase activity, unwinding double-stranded DNA.
Collapse
|
3
|
Paschalis V, Le Chatelier E, Green M, Nouri H, Képès F, Soultanas P, Janniere L. Interactions of the Bacillus subtilis DnaE polymerase with replisomal proteins modulate its activity and fidelity. Open Biol 2017; 7:170146. [PMID: 28878042 PMCID: PMC5627055 DOI: 10.1098/rsob.170146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023] Open
Abstract
During Bacillus subtilis replication two replicative polymerases function at the replisome to collectively carry out genome replication. In a reconstituted in vitro replication assay, PolC is the main polymerase while the lagging strand DnaE polymerase briefly extends RNA primers synthesized by the primase DnaG prior to handing-off DNA synthesis to PolC. Here, we show in vivo that (i) the polymerase activity of DnaE is essential for both the initiation and elongation stages of DNA replication, (ii) its error rate varies inversely with PolC concentration, and (iii) its misincorporations are corrected by the mismatch repair system post-replication. We also found that the error rates in cells encoding mutator forms of both PolC and DnaE are significantly higher (up to 15-fold) than in PolC mutants. In vitro, we showed that (i) the polymerase activity of DnaE is considerably stimulated by DnaN, SSB and PolC, (ii) its error-prone activity is strongly inhibited by DnaN, and (iii) its errors are proofread by the 3' > 5' exonuclease activity of PolC in a stable template-DnaE-PolC complex. Collectively our data show that protein-protein interactions within the replisome modulate the activity and fidelity of DnaE, and confirm the prominent role of DnaE during B. subtilis replication.
Collapse
Affiliation(s)
- Vasileios Paschalis
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Emmanuelle Le Chatelier
- Institut National de la Recherche Agronomique, Génétique Microbienne, 78350 Jouy-en-Josas, France
| | - Matthew Green
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Hamid Nouri
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - François Képès
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| |
Collapse
|
4
|
Datta M, Desai D, Kumar A. Gene Specific DNA Sensors for Diagnosis of Pathogenic Infections. Indian J Microbiol 2017; 57:139-147. [PMID: 28611490 DOI: 10.1007/s12088-017-0650-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
Gene specific DNA based sensors have potential applications for rapid and real time monitoring of hybridization signal with the target nucleic acid of pathogens. Different types of DNA based sensors and their applications have been studied for rapid and accurate detection of pathogens causing human diseases. These sensors are based on surface plasmon resonance, quantum-dots, molecular beacons, piezoelectric and electrochemical etc. Curbing epidemics at an early stage is one of the massive challenges in healthcare systems. Timely detection of the causative organism may provide a solution to restrain mortality caused by the disease. With the advent of interdisciplinary sciences, bioelectronics has emerged as an effective alternative for disease diagnostics. Gene specific DNA sensors present themselves as cost-effective, sensitive and specific platforms for detection of disease causing pathogens. The mini review explores different transducer based sensors and their potential in diagnosis of acute and chronic diseases.
Collapse
Affiliation(s)
- Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 302007 India
| | - Dignya Desai
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 302007 India
| | - Ashok Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| |
Collapse
|
5
|
Rad51 Nucleoprotein Filament Disassembly Captured Using Fluorescent Plasmodium falciparum SSB as a Reporter for Single-Stranded DNA. PLoS One 2016; 11:e0159242. [PMID: 27416037 PMCID: PMC4945038 DOI: 10.1371/journal.pone.0159242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Single-stranded DNA binding (SSB) proteins coordinate DNA replication, repair, and recombination and are critical for maintaining genomic integrity. SSB binds to single-stranded DNA (ssDNA) rapidly and with very high affinity making it a useful molecular tool to detect free ssDNA in solution. We have labeled SSB from Plasmodium falciparum (Pf-SSB) with the MDCC (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)-carbonyl)coumarin) fluorophore which yields a four-fold increase in fluorescence upon binding to ssDNA. Pf-SSBMDCC binding to DNA is unaffected by NaCl or Mg2+ concentration and does not display salt-dependent changes in DNA binding modes or cooperative binding on long DNA substrates. These features are unique to Pf-SSB, making it an ideal tool to probe the presence of free ssDNA in any biochemical reaction. Using this Pf-SSBMDCC probe as a sensor for free ssDNA, we have investigated the clearing of preformed yeast Rad51 nucleoprotein filaments by the Srs2 helicase during HR. Our studies provide a rate for the disassembly of the Rad51 filament by full length Srs2 on long ssDNA substrates. Mutations in the conserved 2B domain in the homologous bacterial UvrD, Rep and PcrA helicases show an enhancement of DNA unwinding activity, but similar mutations in Srs2 do not affect its DNA unwinding or Rad51 clearing properties. These studies showcase the utility of the Pf-SSB probe in mechanistic investigation of enzymes that function in DNA metabolism.
Collapse
|
6
|
Green M, Hatter L, Brookes E, Soultanas P, Scott DJ. Defining the Intrinsically Disordered C-Terminal Domain of SSB Reveals DNA-Mediated Compaction. J Mol Biol 2015; 428:357-364. [PMID: 26707201 DOI: 10.1016/j.jmb.2015.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022]
Abstract
The bacterial single-stranded DNA (ssDNA) binding protein SSB is a strictly conserved and essential protein involved in diverse functions of DNA metabolism, including replication and repair. SSB comprises a well-characterized tetrameric core of N-terminal oligonucleotide binding OB folds that bind ssDNA and four intrinsically disordered C-terminal domains of unknown structure that interact with partner proteins. The generally accepted, albeit speculative, mechanistic model in the field postulates that binding of ssDNA to the OB core induces the flexible, undefined C-terminal arms to expand outwards encouraging functional interactions with partner proteins. In this structural study, we show that the opposite is true. Combined small-angle scattering with X-rays and neutrons coupled to coarse-grained modeling reveal that the intrinsically disordered C-terminal arms are relatively collapsed around the tetrameric OB core and collapse further upon ssDNA binding. This implies a mechanism of action, in which the disordered C-terminal domain collapse traps the ssDNA and pulls functional partners onto the ssDNA.
Collapse
Affiliation(s)
- Matthew Green
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Louise Hatter
- ISIS Spallation Neutron and Muon Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
| | - Emre Brookes
- Department of Biochemistry, MSC 7760, The University of Texas Health Center at San Antonio, 7703 Floyd Curl Drive, San Antonio TX 78229-3900, USA
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - David J Scott
- ISIS Spallation Neutron and Muon Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom; School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom.
| |
Collapse
|