1
|
Dowling R, Narkowicz R, Lenz K, Oelschlägel A, Lindner J, Kostylev M. Resonance-Based Sensing of Magnetic Nanoparticles Using Microfluidic Devices with Ferromagnetic Antidot Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:19. [PMID: 38202474 PMCID: PMC10780436 DOI: 10.3390/nano14010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic channels molded using a 3D printed mold. Two detection schemes were investigated: (i) indirect detection incorporating ferromagnetic antidot nanostructures within microresonators, and (ii) direct detection of nanoparticles without an antidot lattice. Using scheme (i), magnetic nanoparticles noticeably downshifted the resonance fields of an antidot nanostructure by up to 207 G. In a similar antidot device in which nanoparticles were introduced via droplets rather than a microfluidic channel, the largest shift was only 44 G with a sensitivity of 7.57 G/ng. This indicated that introduction of the nanoparticles via microfluidics results in stronger responses from the ferromagnetic resonances. The results for both devices demonstrated that ferromagnetic antidot nanostructures incorporated within planar microresonators can detect nanoparticles captured from dispersions. Using detection scheme (ii), without the antidot array, we observed a strong resonance within the nanoparticles. The resonance's strength suggests that direct detection is more sensitive to magnetic nanoparticles than indirect detection using a nanostructure, in addition to being much simpler.
Collapse
Affiliation(s)
- Reyne Dowling
- Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Ryszard Narkowicz
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Kilian Lenz
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Antje Oelschlägel
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Jürgen Lindner
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Mikhail Kostylev
- Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia;
| |
Collapse
|
2
|
Guo JB, Wei TL, He QH, Cheng JS, Qiu XZ, Liu WP, Lan XQ, Chen LF, Guo M. A magnetic-separation-based homogeneous immunosensor for the detection of deoxynivalenol coupled with a nano-affinity cleaning up for LC-MS/MS confirmation. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1886254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jie-Biao Guo
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Tai-Long Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, People’s Republic of China
| | | | - Xiu-Zhen Qiu
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Wang-Pei Liu
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Xian-Quan Lan
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Lu-Fen Chen
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| | - Min Guo
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| |
Collapse
|
3
|
Hasan N, Iftikhar K. Synthesis, crystal structure and photoluminescence studies of [Eu(dbm)3(impy)] and its polymer-based hybrid film. NEW J CHEM 2019. [DOI: 10.1039/c8nj04560g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An eight-coordinate Eu(iii) complex with 1,3-dibenzoylmethane (Hdbm) and 2-(1H-imidazol-2-yl)pyridine (impy), [Eu(dbm)3(impy)], was synthesized and characterized via elemental analysis, FTIR spectroscopy, ESI-MS+ studies and thermal analysis (TGA/DTA).
Collapse
Affiliation(s)
- Najmul Hasan
- Lanthanide Research Laboratory
- Department of Chemistry Jamia Millia Islamia
- New Delhi 110 025
- India
| | - Khalid Iftikhar
- Lanthanide Research Laboratory
- Department of Chemistry Jamia Millia Islamia
- New Delhi 110 025
- India
| |
Collapse
|
4
|
Molecularly imprinted affinity cryogels for the selective recognition of myoglobin in blood serum. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Li Y, Zhang G, Mao X, Yang S, De Ruyck K, Wu Y. High sensitivity immunoassays for small molecule compounds detection – Novel noncompetitive immunoassay designs. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Beltrán-Leiva MJ, Páez-Hernández D, Arratia-Pérez R. Theoretical Determination of Energy Transfer Processes and Influence of Symmetry in Lanthanide(III) Complexes: Methodological Considerations. Inorg Chem 2018; 57:5120-5132. [DOI: 10.1021/acs.inorgchem.8b00159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- María J. Beltrán-Leiva
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Center of Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics (ReMoPh) Group, Ph.D. Program in Molecular Physical Chemistry, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
- Center of Applied Nanosciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 275, Santiago 8370146, Chile
| |
Collapse
|
7
|
Tan C, Schenk JA, Gajovic-Eichelmann N, Sellrie F, Bier FF. A new one-step antigen heterologous homogeneous fluorescence immunoassay for progesterone detection in serum. Talanta 2015; 134:508-513. [DOI: 10.1016/j.talanta.2014.11.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 11/29/2022]
|
8
|
Abstract
High-throughput multiplex protein biomarker assays continue to gain significance in the fields of biomarker discovery and drug development, due to their economical use of not only the precious clinical biological samples but also expensive reagents. Among these platforms, homogeneous multiplex systems have potential for short assay run times and cost-effective reagent consumptions. However, these systems must overcome challenges of signal cross talk and biochemical cross-reactivity. Despite these obstacles, several homogeneous multiplex immunoassays have been demonstrated. These include fluorescent polarization, fluorescent resonance energy transfer with quantum dots or graphene, luminescent oxygen-channeling immunoassay coupled with aqueous two-phase systems and DNA proximity assays. The balance between speed/simplicity and high multiplexing and robustness of these homogeneous multiplex immunoassays are discussed in this review.
Collapse
Affiliation(s)
- Cameron D Yamanishi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joyce Han-Ching Chiu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Päkkilä H, Peltomaa R, Lamminmäki U, Soukka T. Precise construction of oligonucleotide-Fab fragment conjugate for homogeneous immunoassay using HaloTag technology. Anal Biochem 2014; 472:37-44. [PMID: 25481738 DOI: 10.1016/j.ab.2014.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
The use of oligonucleotide-protein conjugates enables the development of novel types of bioanalytical assays. However, convenient methods for producing covalent and stoichiometric oligonucleotide-protein conjugates are still rare. Here we demonstrate, for the first time, covalent conjugation of DNA oligonucleotide to Fab fragments with a 1:1 ratio using HaloTag self-labeling technology. The oligonucleotide coupling was carried out while the Fab was attached to protein G matrix, thereby enabling straightforward production of covalent conjugates. Furthermore, it allowed convenient purification of the product because the unreacted components were easily removed before the elution of the high-purity conjugate. The prepared conjugate was employed in a homogeneous immunoassay where prostate-specific antigen was used as a model analyte. Switchable lanthanide luminescence was used for detection, and the obtained limit of detection was 0.27 ng/ml. In the future, the developed method for covalent conjugation and successive purification in protein G column could also be applied for introducing other kinds of modifications to Fab fragments in a simple and site-specific manner.
Collapse
Affiliation(s)
- Henna Päkkilä
- Department of Biochemistry/Biotechnology, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Tero Soukka
- Department of Biochemistry/Biotechnology, University of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|