1
|
Zhu S, Yue J, Wang X, Zhang J, Yu M, Zhan Y, Zhu Y, Sy SKB, Lv Z. Metabolomics revealed mechanism for the synergistic effect of sulbactam, polymyxin-B and amikacin combination against Acinetobacter baumannii. Front Microbiol 2023; 14:1217270. [PMID: 37455727 PMCID: PMC10343439 DOI: 10.3389/fmicb.2023.1217270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The emergence of multidrug-resistant (MDR) Acinetobacter baumannii prompts clinicians to consider treating these infections with polymyxin combination. Methods Metabolomic analysis was applied to investigate the synergistic effects of polymyxin-B, amikacin and sulbactam combination therapy against MDR A. baumannii harboring OXA-23 and other drug resistant genes. The drug concentrations tested were based on their clinical breakpoints: polymyxin-B (2 mg/L), amikacin (16 mg/L), polymyxin-B/amikacin (2/16 mg/L), and polymyxin-B/amikacin/sulbactam (2/16/4 mg/L). Results The triple antibiotic combination significantly disrupted levels of metabolites involved in cell outer membrane structure including fatty acids, glycerophospholipids, nucleotides, amino acids and peptides as early as 15 min after administration. Amikacin and polymyxin-B alone perturbed a large number of metabolites at 15 min and 1 h, respectively, but the changes in metabolites were short-lived lasting for less than 4 h. In contrast, the combination treatment disrupted a large amount of metabolites beyond 4 h. Compared to the double-combination, the addition of sulbactam to polymyxin-B/amikacin combination produce a greater disorder in A. baumannii metabolome that further confer susceptibility of bacteria to the antibiotics. Conclusion The metabolomic analysis identified mechanisms responsible for the synergistic activities of polymyxin-B/amikacin/sulbactam against MDR A. baumannii.
Collapse
Affiliation(s)
| | - Jiali Yue
- Ocean University of China, Qingdao, China
| | | | | | - Mingming Yu
- Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sherwin K. B. Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil
| | - Zhihua Lv
- Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Zheng G, Zhao L, Yuan D, Li J, Yang G, Song D, Miao H, Shu L, Mo X, Xu X, Li L, Song X, Zhao Y. A genetically encoded fluorescent biosensor for monitoring ATP in living cells with heterobifunctional aptamers. Biosens Bioelectron 2022; 198:113827. [PMID: 34861524 DOI: 10.1016/j.bios.2021.113827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Visualizing the dynamics of ATP in living cells is key to understanding cellular energy metabolism and related diseases. However, the live-cell applications of current methods are still limited due to challenges in biological compatibility and sensitivity to pH. Herein, a novel label-free fluorescent " turn-on " biosensor for monitoring ATP in living bacterias and mammalian cells was developed. This biosensor (Broc-ATP) employed heterobifunctional aptamers to detect ATP with high sensitivity in vitro. In our system, a very useful tandem method was established by combining four Broc-ATPs with 3 × F30 three-way junction scaffold to construct an intracellular biosensor that achieves sufficient fluorescence to respond to intracellular ATP. This intracellular biosensor can be used for sensitive and specific dynamic imaging of ATP in mammalian cells. Hence, this genetically encoded biosensor provides a robust and efficient tool for the detection of intracellular ATP dynamics and 3 × F30 tandem method expands the application of heterobifunctional aptamers in mammalian cells.
Collapse
Affiliation(s)
- Guoliang Zheng
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Liang Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Deyu Yuan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jia Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Gang Yang
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Danxia Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Linjuan Shu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
3
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
4
|
Liu X, Ma S. Recent Development of Glucosamine‐6‐phosphate Derivatives as Potential Antibacterial Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.201904075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xingbang Liu
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical SciencesShandong University 44 West Culture Road Jinan 250012 P.R. China
| | - Shutao Ma
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical SciencesShandong University 44 West Culture Road Jinan 250012 P.R. China
| |
Collapse
|