1
|
Tomaiuolo R, Zibetti M, Di Resta C, Banfi G. Challenges of the Effectiveness of Traumatic Brain Injuries Biomarkers in the Sports-Related Context. J Clin Med 2023; 12:jcm12072563. [PMID: 37048647 PMCID: PMC10095236 DOI: 10.3390/jcm12072563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic brain injury affects 69 million people every year. One of the main limitations in managing TBI patients is the lack of univocal diagnostic criteria, including the absence of standardized assessment methods and guidelines. Computerized axial tomography is the first-choice examination, despite the limited prevalence of positivity; moreover, its performance is undesirable due to the risk of radiological exposure, prolonged stay in emergency departments, inefficient use of resources, high cost, and complexity. Furthermore, immediacy and accuracy in diagnosis and management of TBIs are critically unmet medical needs. Especially in the context of sports-associated TBI, there is a strong need for prognostic indicators to help diagnose and identify at-risk subjects to avoid their returning to play while the brain is still highly vulnerable. Fluid biomarkers may emerge as new prognostic indicators to develop more accurate prediction models, improving risk stratification and clinical decision making. This review describes the current understanding of the cellular sources, temporal profile, and potential utility of leading and emerging blood-based protein biomarkers of TBI; its focus is on biomarkers that could improve the management of mild TBI cases and can be measured readily and directly in the field, as in the case of sports-related contexts.
Collapse
Affiliation(s)
- Rossella Tomaiuolo
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Martina Zibetti
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Chiara Di Resta
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence:
| | - Giuseppe Banfi
- Faculty of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- IRCCS Galeazzi-Sant’Ambrogio, 20157 Milan, Italy
| |
Collapse
|
2
|
Lee J, Kane BJ, Khanwalker M, Sode K. Development of an electrochemical impedance spectroscopy based biosensor for detection of ubiquitin C-Terminal hydrolase L1. Biosens Bioelectron 2022; 208:114232. [PMID: 35390718 DOI: 10.1016/j.bios.2022.114232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
Abstract
Year over year, the incidence of traumatic brain injury (TBI) in the population is dramatically increasing; thus, timely diagnosis is crucial for improving patient outcomes in the clinic. Ubiquitin C-terminal hydrolase L1 (UCH-L1), a blood-based biomarker, has been approved by the FDA as a promising quantitative indicator of mild TBI that arises in blood serum shortly after injury. Current gold standard techniques for its quantitation are time-consuming and require specific laboratory equipment. Hence, development of a hand-held device is an attractive alternative. In this study, we report a novel system for rapid, one-step electrochemical UCH-L1 detection. Electrodes were functionalized with anti-UCH-L1 antibody, which was used as a molecular recognition element for selective sensing of UCH-L1. Electrochemical impedance spectroscopy (EIS) was used as a transduction method to quantify its binding. When the electrode was incubated with different concentrations of UCH-L1, impedance signal increased against a concentration gradient with high logarithmic correlation. Upon single-frequency analysis, a second calibration curve with greater signal to noise was obtained, which was used to distinguish physiologically relevant concentrations of UCH-L1. Notably, our system could detect UCH-L1 within 5 min, without a washing step nor bound/free separation, and had resolution across concentrations ranging from 1 pM to 1000 pM within an artificial serum sample. These attributes, together with the miniaturization potential afforded by an impedimetric sensing platform, make this platform an attractive candidate for scale-up as a device for rapid, on-site detection of TBI. These findings may aid in the future development of sensing systems for quantitative TBI detection.
Collapse
Affiliation(s)
- Jinhee Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Bryant J Kane
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Mukund Khanwalker
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens Bioelectron 2020; 177:112949. [PMID: 33429205 DOI: 10.1016/j.bios.2020.112949] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a widely implementable technique that can be applied to many fields, ranging from disease detection to environmental monitoring. EIS as a biosensing tool allows detection of a broad range of target analytes in point-of-care (POC) and continuous applications. The technique is highly suitable for multimarker detection due to its ability to produce specific frequency responses depending on the target analyte and molecular recognition element (MRE) combination. EIS biosensor development has shown promising results for the medical industry in terms of diagnosis and prognosis for various biomarkers. EIS sensors offer a cost-efficient system and rapid detection times using minimal amounts of sample volumes, while simultaneously not disturbing the sample being studied due to low amplitude perturbations. These properties make the technique highly sensitive and specific. This paper presents a review of EIS biosensing advancements and introduces different detection techniques and MREs. Additionally, EIS's underlying theory and potential surface modification techniques are presented to further demonstrate the technique's ability to produce stable, specific, and sensitive biosensors.
Collapse
|
5
|
Li Y, Li Y, Wang Y, Ma G, Liu X, Li Y, Soar J. Application of zeolitic imidazolate frameworks (ZIF-8)/ionic liquid composites modified nano-carbon paste electrode as sensor for electroanalytical sensing of 1-hydroxypyrene. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Zinoubi K, Chrouda A, Soltane R, Al‐Ghamdi YO, Garallah Almalki S, Osman G, Barhoumi H, Jaffrezic Renault N. Highly Sensitive Impedimetric Biosensor Based on Thermolysin Immobilized on a GCE Modified with AuNP‐decorated Graphene for the Detection of Ochratoxin A. ELECTROANAL 2020. [DOI: 10.1002/elan.202060247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Khaoula Zinoubi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
| | - Amani Chrouda
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Raya Soltane
- Department Faculty of Sciences of Tunis Tunis El Manar University Tunisia
- Department of Basic Sciences, Adham University college Umm Al-Qura University Adham 21971 Saudi Arabia
| | - Youssef O. Al‐Ghamdi
- Department of chemistry, College of Science at Zulfi Majmaah University Zulfi 11932 Saudi Arabia
| | - Sami Garallah Almalki
- Department of Biology, College of Science Al-zulfi Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Gamal Osman
- Department of Biology, Faculty of Applied Sciences Umm Al-Qura University Makkah Saudi Arabia
- Research Laboratories Center, Faculty of Applied Science Umm Al-Qura University Mecca Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), ARC 12619 Giza Egypt
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences University of Monastir Monastir Tunisia
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| | - Nicole Jaffrezic Renault
- Institute of Analytical Sciences, UMR CNRS-UCBL 5280 5 Rue la Doua 69100 Villeurbanne Cedex France
| |
Collapse
|
7
|
Khetani S, Ozhukil Kollath V, Kundra V, Nguyen MD, Debert C, Sen A, Karan K, Sanati-Nezhad A. Polyethylenimine Modified Graphene-Oxide Electrochemical Immunosensor for the Detection of Glial Fibrillary Acidic Protein in Central Nervous System Injury. ACS Sens 2018. [PMID: 29516727 DOI: 10.1021/acssensors.8b00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is as an intermediate filament protein expressed by certain cells in the central nervous system (CNS). GFAP has been recognized as a reliable biomarker of CNS injury. However, due to the absence of rapid and easy-to-use assays for the detection of CNS injury biomarkers, measuring GFAP levels to identify CNS injury has not attained widespread clinical implementation. In the present work, we developed a polyethylenimine (PEI) coated graphene screen-printed electrode and used it for highly sensitive immunosensing of GFAP. Covalent binding of GFAP antibody to the PEI-modified electrode surface along with electrochemical impedance spectroscopy was used for detecting the change in the electrical conductivity of the electrodes. A highly linear response was recorded for various GFAP concentrations. Quantitative, selective, and label-free detection was achieved in the dynamic range of 1 pg mL-1 to 100 ng mL-1 for GFAP spiked in phosphate buffer saline, artificial cerebrospinal fluid, and human blood serum. The performance of the immunosensor was further validated and correlated by testing samples with the commercially available enzyme-linked immunosorbent assay method. This functionalized electrode could be used clinically for rapid detection and monitoring of CNS injury.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Varun Kundra
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Minh Dang Nguyen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chantel Debert
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, Foothills Medical Centre, University of Calgary, Calgary, Alberta T2H 2T9, Canada
| | - Arindom Sen
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta T2N 1N4, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
8
|
Ganau M, Syrmos N, Paris M, Ganau L, Ligarotti GKI, Moghaddamjou A, Chibbaro S, Soddu A, Ambu R, Prisco L. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology. MEDICINES 2018; 5:medicines5010019. [PMID: 29401743 PMCID: PMC5874584 DOI: 10.3390/medicines5010019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI), a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc.), the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.
Collapse
Affiliation(s)
- Mario Ganau
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Nikolaos Syrmos
- School of Medicine, Aristotle University of Thessaloniki, 54623 Thessaloniki, Greece.
| | - Marco Paris
- National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK.
| | - Laura Ganau
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | | | - Ali Moghaddamjou
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Salvatore Chibbaro
- Division of Neurosurgery, University of Strasbourg, 67000 Strasbourg, France.
| | - Andrea Soddu
- Brain and Mind Institute, Physics & Astronomy Department, Western University, London, ON N6A 3K7, Canada.
| | - Rossano Ambu
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Lara Prisco
- John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, UK.
| |
Collapse
|
9
|
Gibson CL, Bath PM. Feasibility of progesterone treatment for ischaemic stroke. J Cereb Blood Flow Metab 2016; 36:487-91. [PMID: 26661235 PMCID: PMC4776310 DOI: 10.1177/0271678x15616782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/11/2015] [Indexed: 11/18/2022]
Abstract
Two multi-centre phase III clinical trials examining the protective potential of progesterone following traumatic brain injury have recently failed to demonstrate any improvement in outcome. Thus, it is timely to consider how this impacts on the translational potential of progesterone treatment for ischaemic stroke. A wealth of experimental evidence supports the neuroprotective properties of progesterone, and associated metabolites, following various types of central nervous system injury. In particular, for ischaemic stroke, studies have also begun to reveal possible mechanisms of such neuroprotection. However, the results in traumatic brain injury now question whether further clinical development of progesterone for ischaemic stroke is relevant.
Collapse
Affiliation(s)
- Claire L Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Philip M Bath
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|