1
|
Radfar S, Sheikh M, Akhavantabib A, Heidari A, Ghasemi M, Naghavi M, Ghanbari R, Zibadi F, Jamshidi B, Alizadeh A. Application of a porous zirconium-based MOF nanoplate as an affinity ECL platform for the detection of protein kinase activity and inhibitor screening. Talanta 2025; 287:127675. [PMID: 39923669 DOI: 10.1016/j.talanta.2025.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Abnormal kinase expression affects phosphorylation in the human body, which is associated with numerous diseases, including cancer, diabetes mellitus, and Alzheimer's disease. In this study, we synthesized a highly stable, two-dimensional, luminescence-functionalized metal-organic framework with remarkable electrochemiluminescence (ECL) by immobilizing 9,10-Di(p-carboxyphenyl) anthracene (dca) on a zirconium cluster (dca-Zr₁₂) via a strong coordination bond between -COO⁻ and Zr⁴⁺. This novel and simple platform relies on the highly specific identification of phosphate molecules by the ultra-thin dca-Zr₁₂ nanoplate through carboxylate-Zr⁴⁺-phosphate chemistry. The ferrocene-labeled peptide substrate (Fc-S-Peptide) was phosphorylated in the presence of protein kinase A (PKA) and adenosine 5'-triphosphate (ATP), and the resulting phosphopeptide could subsequently be precisely captured by the zirconium sites of the dca-Zr12-modified electrode and, eventually, quench the ECL and gain a signal-off state. This rapid and simple detection strategy was successfully employed to measure PKA activity, with a detection limit as low as 0.35 mU mL-1. Based on the results, it exhibited high selectivity and can be applied for screening PKA inhibitors. The technique was subsequently applied to detect protein kinase activity in drug-stimulated MCF-7 cell lysates, demonstrating its potential for kinase-related investigations. Further, this platform could identify the activity of other kinase types with universal applicability.
Collapse
Affiliation(s)
- Sasan Radfar
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Milad Sheikh
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Amirreza Akhavantabib
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Amirhossein Heidari
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Milad Ghasemi
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammadreza Naghavi
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ghanbari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Jamshidi
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Abdolhamid Alizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, 1993893973, Iran.
| |
Collapse
|
2
|
Electron transfer in protein modifications: from detection to imaging. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Jiang S, Wang P, Li CC, Cui L, Li YY, Zhang CY. Development of a phos-tag-based fluorescent biosensor for sensitive detection of protein kinase in cancer cells. J Mater Chem B 2022; 10:3260-3267. [DOI: 10.1039/d2tb00264g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein kinase can catalyze the phosphorylation of peptides/proteins, and it is closely associated with various human diseases such as cancer, immune deficiencies, and Alzheimer’s disease. Sensitive monitoring of protein kinase...
Collapse
|
6
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Chang Y, Ma X, Sun T, Liu L, Hao Y. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021; 234:122649. [PMID: 34364458 DOI: 10.1016/j.talanta.2021.122649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
In the classical heterogeneous electrochemical assay, phosphorylation of peptide substrate is usually performed on the solid-liquid surface. However, immobilization of probe on the solid surface may limit the interaction between the reaction site of probe and the active center of kinase due to the steric hindrance effect. In this work, we proposed a heterogeneous electrochemical method for kinase detection, in which the probe is immobilization-free during the phosphorylation reaction. A biotinylated peptide was used as the kinase substrate. After phosphorylation, the biotinylated phosphopeptide was captured by the neutravidin (NA)-modified electrode through the avidin-biotin interaction. The phosphate groups on the electrode surface were then recognized by the conjugates preformed between biotinylated Phos-tag™ (Bio-tag-Phos) and ferrocene (Fc)-capped NA-modified gold nanoparticle (Fc-AuNP-NA). The method integrates the advantages of homogeneous reaction and heterogeneous detection with high simplicity, sensitivity and specificity. The strategy can be applied to design other heterogeneous biosensors without the immobilization of probe during the enzyme catalyzed reaction.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiaohua Ma
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China
| | - Ting Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| |
Collapse
|
8
|
Tao Y, Chen L, Pan M, Zhu F, Zhu D. Tailored Biosensors for Drug Screening, Efficacy Assessment, and Toxicity Evaluation. ACS Sens 2021; 6:3146-3162. [PMID: 34516080 DOI: 10.1021/acssensors.1c01600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biosensors have been flourishing in the field of drug discovery with pronounced developments in the past few years. They facilitate the screening and discovery of innovative drugs. However, there is still a lack of critical reviews that compare the merits and shortcomings of these biosensors from a pharmaceutical point of view. This contribution presents a critical and up-to-date overview on the recent progress of tailored biosensors, including surface plasmon resonance, fluorescent, photoelectrochemical, and electrochemical systems with emphasis on their mechanisms and applications in drug screening, efficacy assessment, and toxicity evaluation. Multiple functional nanomaterials have also been incorporated into the biosensors. Representative examples of each type of biosensors are discussed in terms of design strategy, response mechanism, and potential applications. In the end, we also compare the results and summarize the major insights gained from the works, demonstrating the challenges and prospects of biosensors-assisted drug discovery.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiling Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
9
|
Liu S, Zheng S, Chu J. Cationic Polythiophene-based Colorimetric Assay for Probing the Activity of Protein Kinase A. ANAL SCI 2021; 37:1039-1043. [PMID: 33250451 DOI: 10.2116/analsci.20n034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, a novel colorimetric assay based on polythiophene derivative (PMNT) was designed for the detection of protein kinase A (PKA). PKA can catalyze the phosphorylation of peptide, leading to the conformation change of PMNT from random-coil to planar, with the disappearance of absorption peaks above 500 nm and a color change from pink to yellow. The fabricated assay exhibits a wide linear range of 0.05 - 20 U/mL with a detection limit of 0.02 U/mL for PKA activity detection. The proposed protocol has promising prospects for use in clinical diagnosis related to PKA activity.
Collapse
Affiliation(s)
- Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University
| | - Sitian Zheng
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University
| | - Jing Chu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University
| |
Collapse
|
10
|
Electrochemiluminescence sensor based on cyclic peptides-recognition and Au nanoparticles assisted graphitic carbon nitride for glucose determination. Mikrochim Acta 2021; 188:151. [PMID: 33813618 DOI: 10.1007/s00604-021-04797-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
A glucose (Glu) sensor was designed by introducing synthetic cyclic peptides (CPs) as recognition receptors and Au nanoparticles assisted graphitic carbon nitride (AuNPs/g-C3N4) for electrochemiluminescence (ECL) enhancement. The synthetic CP receptor (cyclo-[-CNDNHCRDNDC-]) with natural active center of Glu binding protein can mimic the interactions between Glu and Glu binding protein to specifically capture Glu. The AuNPs were reduced on g-C3N4 and formed a new nanohybrid that can be applied as an ECL emitter. The AuNPs/g-C3N4 effectively ameliorated the ECL response of bare g-C3N4. The ECL enhancement mechanism was theoretically speculated through computer simulation. Glu quantification was conducted by recording ECL shifts induced by the binding of Glu to CPs. The linear detection range of the fabricated CPs-based ECL sensor was 1 to 100 mmol L-1, and the detection limit (LOD) was 0.57 nmol L-1 (S / N = 3). The CP-based ECL sensor also showed good specificity, repeatability, stability, and favorable recoveries in sample analysis. This work offer a promising analytical method for Glu assay in clinical diagnostics and bioprocess monitoring.
Collapse
|
11
|
Liu J, Wang S. Convenient and highly sensitive detection of Cu2+ using chitosan solid film with g-C3N4 nanosheets. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA solid fluorescence sensor composed of g-C3N4 nanosheets and chitosan solid film was fabricated by electrostatic interaction. The g-C3N4 nanosheet/chitosan solid film showed selectivity and sensitivity to Cu2+ which was higher than that of other metal ions in common use. Cu2+ ions were found to efficiently bind and quench the fluorescence of the g-C3N4 nanosheet/chitosan solid film. The absorption band of the g-C3N4 nanosheet/chitosan solid film was at 240 nm in the presence of Cu2+, and the maximum emission peak was at 380 nm. Copper ion concentrations were between 0 and 3.1 × 10−5 mol/L at pH 7, the detection limit is 5 nM, compared with previous reports, it was much lower than before. Good linear relationships existed between the metal ion concentration and fluorescence intensity of g-C3N4 nanosheets in the quenching and recovering processes. This is the first study to report on the detection of Cu2+ by utilizing g-C3N4 nanosheet/chitosan composite film. The as-prepared films were conveniently prepared, easy to operate, and recyclable, as well as sensitive and selective to detect Cu2+ in water. All these features indicate the sensor’s potential application in disease diagnosis.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, PR China
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, PR China
| |
Collapse
|
12
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
XIE HZ, YANG B, LI JP. A Molecularly Imprinted Electrochemical Luminescence Sensor for Detection of Gibberellin Based on Energy Transfer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60065-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Li F, Zhou Y, Yin H, Ai S. Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs. Biosens Bioelectron 2020; 166:112476. [DOI: 10.1016/j.bios.2020.112476] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023]
|
15
|
Fu R, Yu P, Wang M, Sun J, Chen D, Jin C, Li Z. The research of lead ion detection based on rGO/g-C3N4 modified glassy carbon electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Shiravand G, Badiei A, Goldooz H, Karimi M, Ziarani GM, Faridbod F, Ganjali MR. A Fluorescent g-C3N4 Nanosensor for Detection of Dichromate Ions. CURR ANAL CHEM 2020; 16:593-601. [DOI: 10.2174/1573411014666180627150248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/21/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
Background:
Dichromate (Cr2O7
2-) ion is one of the carcinogenic and toxic spices in
environment which can easily contaminate the environment due to its high solubility in water. Therefore,
a lot of attention has been focused on the detection of Cr2O7
2- with high sensitivity and selectivity.
Methods:
In present work, nitrogen-rich precursor was used for synthesizing graphitic carbon nitride
(g-C3N4) nanostructures through hydrothermal oxidation of g-C3N4 nanosheets. The prepared
nanostructures show two distinct fluorescence emissions centered at 368 and 450 nm which are highly
sensitive toward Cr2O7
2- ions.
Results:
The as-prepared g-C3N4 was characterized by several techniques such as Fourier-Transform
Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and
fluorescence emission spectra. The XRD pattern of prepared nanostructures illustrated two diffraction
patterns (at 13.4° and 27.6°) indicating tri-s-tri-azine-based structures. The g-C3N4 exhibited good selectivity
and sensitivity toward Cr2O7
2- among other anions. According to titration test, the detection
limit and stern-volmer constant (Ksv) were calculated as 40 nM and 0.13×106 M-1, respectively. The
investigation of quenching mechanism shows that Cr2O7
2- may form hydrogen bonding with surface
groups of g-C3N4 (such as NH2, OH and COOH) resulted in more fluorescence quenching in comparison
with the pure inner filter effect.
Conclusion:
The g-C3N4 nanostructures were successfully synthesized through the hydrothermal oxidation.
The as-prepared g-C3N4 can be used as a highly sensitive fluorescent probe for the selective
determination of Cr2O7
2 ion among other anions. The quenching mechanism was experimentally studied.
According to reliable responses in real sample tests, it can be proposed that g-C3N4 nanostructure
is a suitable sensitive nanosensor for detection of Cr2O7
2 ions in aqueous media.
Collapse
Affiliation(s)
- Ghasem Shiravand
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Goldooz
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Karimi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ghodsi M. Ziarani
- Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad R. Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Enhancement of Biosensors by Implementing Photoelectrochemical Processes. SENSORS 2020; 20:s20113281. [PMID: 32526947 PMCID: PMC7308923 DOI: 10.3390/s20113281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
Research on biosensors is growing in relevance, taking benefit from groundbreaking knowledge that allows for new biosensing strategies. Electrochemical biosensors can benefit from research on semiconducting materials for energy applications. This research seeks the optimization of the semiconductor-electrode interfaces including light-harvesting materials, among other improvements. Once that knowledge is acquired, it can be implemented with biological recognition elements, which are able to transfer a chemical signal to the photoelectrochemical system, yielding photo-biosensors. This has been a matter of research as it allows both a superior suppression of background electrochemical signals and the switching ON and OFF upon illumination. Effective electrode-semiconductor interfaces and their coupling with biorecognition units are reviewed in this work.
Collapse
|
18
|
Hu Q, Kong J, Han D, Bao Y, Zhang X, Zhang Y, Niu L. Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization. Talanta 2020; 206:120173. [DOI: 10.1016/j.talanta.2019.120173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 01/16/2023]
|
19
|
Gold nanoclusters enhanced electrochemiluminescence of g-C3N4 for protein kinase activity analysis and inhibition. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Yan Z, Deng P, Liu Y. Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials. Int J Mol Sci 2019; 20:ijms20061440. [PMID: 30901923 PMCID: PMC6471164 DOI: 10.3390/ijms20061440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation regulated by protein kinases, as well as their dephosphorylation, is one of the most common post-translational modifications, and plays important roles in physiological activities, such as intracellular signal communications, gene transcription, cell proliferation and apoptosis. Over-expression of protein kinases is closely associated with various diseases. Consequently, accurate detection of protein kinases activities and their relevant inhibitors screening is critically important, not only to the biochemical research, but also to the clinical diagnosis and therapy. Nanomaterials, taking advantage of large surface areas, as well as excellent electrical, catalytic, magnetic and optical properties, have been utilized as target concentrators, recognition components, signal transducer or amplification elements in protein kinase related assays. This review summarizes the recent representative works to highlight the applications of nanomaterials in different biosensor technologies for protein kinases activities detection and their inhibitors screening. First, different nanomaterials developed for phosphoprotein/phosphopeptide enrichment and phosphate recognition are introduced. Next, representative works are selected that mainly focus on the utilization of nanomaterials as signal transducer or amplification elements in various protein kinases sensing platforms, such as electrochemical, colorimetric, fluorescent, and mass spectroscopy-based approaches. Finally, the major challenges and perspectives of nanomaterials being applied in protein kinases related assays are discussed.
Collapse
Affiliation(s)
- Zhiyong Yan
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China.
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China.
| | - Pingye Deng
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China.
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Hu Q, Kong J, Han D, Zhang Y, Bao Y, Zhang X, Niu L. Electrochemically Controlled RAFT Polymerization for Highly Sensitive Electrochemical Biosensing of Protein Kinase Activity. Anal Chem 2019; 91:1936-1943. [DOI: 10.1021/acs.analchem.8b04221] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuwei Zhang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xueji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Jiang L, Mo G, Yu C, Ya D, He X, Mo W, Deng B. Based on reduced graphene oxide-copper sulfide-carbon nitride nanosheets composite electrochemiluminescence sensor for determination of gatifloxacin in mouse plasma. Colloids Surf B Biointerfaces 2019; 173:378-385. [DOI: 10.1016/j.colsurfb.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023]
|
23
|
Wang Y, Li X, Waterhouse GIN, Zhou Y, Yin H, Ai S. Photoelectrochemical biosensor for protein kinase A detection based on carbon microspheres, peptide functionalized Au-ZIF-8 and TiO 2/g-C 3N 4. Talanta 2018; 196:197-203. [PMID: 30683351 DOI: 10.1016/j.talanta.2018.12.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
In this work, a novel and sensitive photoelectrochemical (PEC) strategy was designed for protein kinase A (PKA) detection, comprising carbon microsphere (CMS) modified ITO electrode, TiO2 as the phosphate group recognition material and graphite-carbon nitride (g-C3N4) as photoactive material. For the first time, gold nanoparticle decorated zeolitic imidazolate frameworks (Au-ZIF-8) was employed to fabricate biosensor for PKA activity assay with the function of substrate peptide immobilization and signal amplification. Firstly, substrate peptides were assembled on the Au-ZIF-8/CMS/ITO surface through the covalent bonding between the gold nanoparticles (AuNPs) and sulfydryl groups of the peptides. Then, in the presence of ATP, phosphorylation of the substrate peptide was achieved under PKA catalysis. Finally, TiO2-g-C3N4 composites were further modified on the electrode surface based on bonding between TiO2 and phosphate groups created via phosphorylation of the peptide (yielding TiO2-g-C3N4/P-peptide/Au-ZIF-8/CMS/ITO), which is different with our previous work by directly immobilizing g-C3N4 composite on electrode surface. The developed method showed a wide linear range from 0.05-50 U mL-1. The detection limit was 0.02 U mL-1 (S/N = 3). The constructed biosensor exhibited high detection specificity for PKA. In addition, the wide applicability of this biosensor was demonstrated by evaluating the inhibition ability of ellagic acid towards PKA.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Xue Li
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China.
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| |
Collapse
|
24
|
Zhao J, Yang L, Dai Y, Tang Y, Gong X, Du D, Cao Y. Peptide-templated multifunctional nanoprobe for feasible electrochemical assay of intracellular kinase. Biosens Bioelectron 2018; 119:42-47. [DOI: 10.1016/j.bios.2018.07.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 01/03/2023]
|
25
|
Wang Z, Liu J, Liu X, Shi X, Dai Z. Photoelectrochemical Approach to Apoptosis Evaluation via Multi-Functional Peptide- and Electrostatic Attraction-Guided Excitonic Response. Anal Chem 2018; 91:830-835. [DOI: 10.1021/acs.analchem.8b03195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jia Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiaoyu Shi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, P. R. China
| |
Collapse
|
26
|
Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chemistry 2018; 24:14010-14027. [DOI: 10.1002/chem.201801358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Jing Fan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Yun Ju
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
27
|
Ma H, Fan Q, Fan B, Zhang Y, Fan D, Wu D, Wei Q. Formation of Homogeneous Epinephrine-Melanin Solutions to Fabricate Electrodes for Enhanced Photoelectrochemical Biosensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7744-7750. [PMID: 29884025 DOI: 10.1021/acs.langmuir.8b00264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of a simple but effective surface modification method is very important for the construction of biosensing interfaces. In this work, a postsynthetic water-soluble epinephrine-melanin (EPM) prepared from the self-polymerization of epinephrine has been demonstrated as an alternative of the widely used in situ formed polydopamine (PDA) for the surface coating of TiO2 nanoparticles and the construction of a photoelectrochemical (PEC) biosensing interface. In contrast to the formation of insoluble aggregates in solution for dopamine, a homogeneous solution was obtained for epinephrine after the self-polymerization. The use of EPM as a postsynthetic material enables the surface coating of TiO2 with the simple drop-casting method. Compared with the widely used dip-coating method for in situ PDA modification, the developed drop-casting method based on the use of water-soluble postsynthetic EPM saves more time, avoids the waste of bulk solution, and undoubtedly decreases the batch-to-batch inconsistencies. The simple coating of commercially available TiO2 nanoparticles with EPM greatly enhances the PEC performance due to the charge transfer property of EPM. The application of EPM in the construction of the PEC biosensing interface was demonstrated by the immobilization of a model biorecognition element (prostate specific antigen (PSA) antibody) onto EPM modified indium tin oxide (ITO) photoanode. Sensitive detection of PSA with high selectivity and stability was obtained on the basis of the biological recognition ability of PSA antibody. This work may renew the use of postsynthetic melanin-like biopolymers in other fields.
Collapse
Affiliation(s)
- Hongmin Ma
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , 250022 , China
| | - Qi Fan
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , 250022 , China
| | - Bobo Fan
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , 250022 , China
| | - Yong Zhang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , 250022 , China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , 250022 , China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , 250022 , China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , 250022 , China
| |
Collapse
|
28
|
Hu Q, Wang Q, Jiang C, Zhang J, Kong J, Zhang X. Electrochemically mediated polymerization for highly sensitive detection of protein kinase activity. Biosens Bioelectron 2018; 110:52-57. [DOI: 10.1016/j.bios.2018.03.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 11/25/2022]
|
29
|
Ultrasensitive photoelectrochemical biosensor for the detection of HTLV-I DNA: A cascade signal amplification strategy integrating λ-exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis. Biosens Bioelectron 2018; 109:190-196. [DOI: 10.1016/j.bios.2018.03.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
|
30
|
Xiong E, Yan X, Zhang X, Li Y, Yang R, Meng L, Chen J. A new photoelectrochemical biosensor for ultrasensitive determination of nucleic acids based on a three-stage cascade signal amplification strategy. Analyst 2018; 143:2799-2806. [DOI: 10.1039/c8an00609a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Based on a “signal-on” sensing strategy and a three-stage cascade signal amplification method, an ultrasensitive photoelectrochemical biosensor has been developed for DNA detection.
Collapse
Affiliation(s)
- Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiaoxia Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yanmei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ruiying Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Leixia Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
31
|
Feng S, Wei X, Zhong L, Li J. A Novel Molecularly Imprinted Photoelectrochemical Sensor Based on g-C3
N4
-AuNPs for the Highly Sensitive and Selective Detection of Triclosan. ELECTROANAL 2017. [DOI: 10.1002/elan.201700514] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shasha Feng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering; Guilin University of Technology; Guilin 541004 China
| | - Xiaoping Wei
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering; Guilin University of Technology; Guilin 541004 China
| | - Li Zhong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering; Guilin University of Technology; Guilin 541004 China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering; Guilin University of Technology; Guilin 541004 China
| |
Collapse
|
32
|
Wang Z, Yan Z, Wang F, Cai J, Guo L, Su J, Liu Y. Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks. Biosens Bioelectron 2017; 97:107-114. [DOI: 10.1016/j.bios.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
33
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
34
|
Yin HS, Li BC, Zhou YL, Wang HY, Wang MH, Ai SY. Signal-on fluorescence biosensor for microRNA-21 detection based on DNA strand displacement reaction and Mg 2+ -dependent DNAzyme cleavage. Biosens Bioelectron 2017; 96:106-112. [DOI: 10.1016/j.bios.2017.04.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 01/09/2023]
|
35
|
Biechele-Speziale J, Huy BT, Nguyen TTT, Vuong NM, Conte E, Lee YI. A facile preparation of highly fluorescent carbon nitride nanoparticles via solid state reaction for optosensing mercury ions and bisphenol A. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Liu J, Cheng H, He D, He X, Wang K, Liu Q, Zhao S, Yang X. Label-Free Homogeneous Electrochemical Sensing Platform for Protein Kinase Assay Based on Carboxypeptidase Y-Assisted Peptide Cleavage and Vertically Ordered Mesoporous Silica Films. Anal Chem 2017; 89:9062-9068. [DOI: 10.1021/acs.analchem.7b01739] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinquan Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Qiaoqiao Liu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Shuaiqi Zhao
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| | - Xudong Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Biology, College of Chemistry and Chemical
Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule
Engineering of Hunan Province, Changsha 410082, China
| |
Collapse
|
37
|
Ma C, Lv X, Wang K, Jin S, Liu H, Wu K, Zeng W. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe. Bioengineered 2017; 8:716-722. [PMID: 28594266 DOI: 10.1080/21655979.2017.1338219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.
Collapse
Affiliation(s)
- Changbei Ma
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China.,b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Xiaoyuan Lv
- b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Kemin Wang
- b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Shunxin Jin
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Haisheng Liu
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Kefeng Wu
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Weimin Zeng
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| |
Collapse
|
38
|
Zhuang J, Han B, Liu W, Zhou J, Liu K, Yang D, Tang D. Liposome-amplified photoelectrochemical immunoassay for highly sensitive monitoring of disease biomarkers based on a split-type strategy. Biosens Bioelectron 2017; 99:230-236. [PMID: 28763784 DOI: 10.1016/j.bios.2017.07.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/06/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022]
Abstract
Liposomes are an excellent candidate component for biosensors to transduce and amplify detection signals due to their outstanding ability in encapsulating signal marker compounds. However, the use of liposomes for photoelectrochemical (PEC) signal transduction has not yet been achieved due the lack of appropriate sensing strategy. Herein, we report on a novel liposomes-amplified PEC immunoassay (LAPIA) method for sensitive HIV-p24 antigen (p24) detection based on a split-type strategy. Initially, liposomes were encapsulated with alkaline phosphatase (ALP) in their hydrophilic chamber and conjugated with secondary antibody on the surface to form the ALP-encapsulated liposomes (ALP-Ls) based PEC signal label. Sandwiched immunoassay based on the ALP-Ls label was then carried out in microwell plate. Upon addition of tween 20, the ALP molecules were released and catalyzed the hydrolysis of ascorbic acid 2-phosphate (AA-p) to produce ascorbic acid (AA). The latter then donated electron to the graphene/g-C3N4 nanohybrids based photoelectrode, arousing an increased photocurrent signal. The separation of immunoreaction step and PEC signal excitation (i.e. split-type) not only enabled the realization of liposomes based amplification strategy, but also could eliminate the PEC-caused biomolecules damage. The developed PEC method possessed a wide calibration range from 1.0pgmL-1 to 50ngmL-1 and a low detection limit of 0.63pgmL-1. Its practicability was demonstrated by assaying human serum samples. Moreover, the universality of the liposomes-amplified PEC sensing strategy was also demonstrated by developing it into a sensitive microRNA detection method.
Collapse
Affiliation(s)
- Junyang Zhuang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China.
| | - Bin Han
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenchao Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China
| | - Jinfei Zhou
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China
| | - Kewei Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education&Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| |
Collapse
|
39
|
Amperometric determination of the activity of protein kinase a using a glassy carbon electrode modified with IgG functionalized gold nanoparticles conjugated to horseradish peroxidase. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2341-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Zhao WW, Xu JJ, Chen HY. Photoelectrochemical enzymatic biosensors. Biosens Bioelectron 2017; 92:294-304. [DOI: 10.1016/j.bios.2016.11.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
|
41
|
Wang H, Zhang Q, Yin H, Wang M, Jiang W, Ai S. Photoelectrochemical immunosensor for methylated RNA detection based on g-C 3N 4/CdS quantum dots heterojunction and Phos-tag-biotin. Biosens Bioelectron 2017; 95:124-130. [PMID: 28433859 DOI: 10.1016/j.bios.2017.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
N6-methyladenosine (m6A) is an enigmatic and abundant internal modification in eukaryotic messenger RNA (mRNA), which could affect various aspects of RNA metabolism and mRNA translation. Herein, a novel photoelectrochemical (PEC) immunosensor was constructed for m6A detection based on the inhibition of Cu2+ to the photoactivity of g-C3N4/CdS quantum dots (g-C3N4/CdS) heterojunction, where g-C3N4/CdS heterojunction was used as photoactive material, anti-m6A antibody as recognition unit for m6A-containing RNA, Phos-tag-biotin as link unit and avidin functionalized CuO as PEC signal indicator. When CuO was captured on electrode through biotin-avidin affinity reaction and then treated with HCl, Cu2+ could be released and CuxS would be formed based on the selective interaction between CdS and Cu2+, leading the photocurrent obviously decreased. Under the optimal detection conditions, the PEC biosensor displayed a linear range of 0.01-10nM and a low detection limit of 3.53 pM for methylated RNA determination. Furthermore, the developed method could also be used to detect the expression level of m6A methylated RNA in serum samples of breast cancer patient before and after operative treatment. The proposed assay strategy has a great potential for detecting the expression methylation level of RNA in real sample.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qihai Zhang
- Department of pediatric orthopedics, Tai'an Central Hospital, Tai'an 271000, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Minghui Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Wenjing Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
42
|
Shiravand G, Badiei A, Mohammadi Ziarani G. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. SENSORS AND ACTUATORS B: CHEMICAL 2017; 242:244-252. [DOI: 10.1016/j.snb.2016.11.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
43
|
Zhu C, Du D, Lin Y. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron 2017; 89:43-55. [DOI: 10.1016/j.bios.2016.06.045] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
44
|
Li X, Zhu L, Zhou Y, Yin H, Ai S. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO2/g-C3N4, PAMAM Dendrimer, and Alkaline Phosphatase. Anal Chem 2017; 89:2369-2376. [DOI: 10.1021/acs.analchem.6b04184] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xue Li
- College
of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Lusheng Zhu
- College
of Resources and Environment, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Yunlei Zhou
- College
of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Huanshun Yin
- College
of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Shiyun Ai
- College
of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, P. R. China
| |
Collapse
|
45
|
Zhou Y, Yin H, Li X, Li Z, Ai S, Lin H. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase. Biosens Bioelectron 2016; 86:508-515. [DOI: 10.1016/j.bios.2016.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 12/19/2022]
|
46
|
A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 2016; 85:220-225. [DOI: 10.1016/j.bios.2016.05.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
|
47
|
The progress of luminescent assay in clinical diagnosis and treatment of diabetes mellitus. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Dong Y, Wang Q, Wu H, Chen Y, Lu CH, Chi Y, Yang HH. Graphitic Carbon Nitride Materials: Sensing, Imaging and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5376-5393. [PMID: 27611869 DOI: 10.1002/smll.201602056] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Indexed: 05/14/2023]
Abstract
Graphitic carbon nitrides (g-C3 N4 ) are a class of 2D polymeric materials mainly composed of carbon and nitrogen atoms. g-C3 N4 are attracting dramatically increasing interest in the areas of sensing, imaging, and therapy, due to their unique optical and electronic properties. Here, the luminescent properties (mainly includes photoluminescence and electrochemiluminescence), and catalytic and photoelectronic properties related to sensing and therapy applications of g-C3 N4 materials are reviewed. Furthermore, the fabrication and advantages of sensing, imaging and therapy systems based on g-C3 N4 materials are summarized. Finally, the future perspectives for developing the sensing, imaging and therapy applications of the g-C3 N4 materials are discussed.
Collapse
Affiliation(s)
- Yongqiang Dong
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Qian Wang
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Haishan Wu
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yingmei Chen
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Chun-Hua Lu
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350108, China.
| | - Yuwu Chi
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350108, China.
| | - Huang-Hao Yang
- The Key Laboratory of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350108, China.
| |
Collapse
|
49
|
Pang X, Zhang Y, Pan J, Zhao Y, Chen Y, Ren X, Ma H, Wei Q, Du B. A photoelectrochemical biosensor for fibroblast-like synoviocyte cell using visible light-activated NCQDs sensitized-ZnO/CH 3 NH 3 PbI 3 heterojunction. Biosens Bioelectron 2016; 77:330-8. [DOI: 10.1016/j.bios.2015.09.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
50
|
Fan Y, Tan X, Liu X, Ou X, Chen S, Wei S. A novel non-enzymatic electrochemiluminescence sensor for the detection of glucose based on the competitive reaction between glucose and phenoxy dextran for concanavalin A binding sites. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.08.153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|