1
|
Raucci A, Sorrentino G, Singh S, Borbone N, Oliviero G, Piccialli G, Terracciano M, Cinti S. Cost-effective, user-friendly detection and preconcentration of thrombin on a sustainable paper-based electrochemical platform. Anal Bioanal Chem 2025; 417:1863-1872. [PMID: 39891658 PMCID: PMC11914299 DOI: 10.1007/s00216-025-05764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Thrombin overexpression in serum serves as a critical biomarker and is implicated in several diseases associated with significant morbidity and mortality. Existing techniques for thrombin detection are time-consuming and require sophisticated equipment and extensive sample preparation procedures, which further delay the detection and increase the cost of the procedure. Early and accessible diagnosis at the point of care, especially in limited-resource countries, represents the first step of clinical interventions. To overcome these limitations, we have proposed an innovative, sustainable paper-based electrochemical detection platform for thrombin. In this work, a sustainable paper-based aptasensor was rationally designed, characterized, evaluated against conventional gold standard plastic-based substrates, and applied to human serum, yielding a detection limit of ~ 60 pM. The present method provides an efficient and user-friendly way for the detection of thrombin and potentially leading to better management and treatment outcomes for patients.
Collapse
Affiliation(s)
- Ada Raucci
- Department of Pharmacy, University of Naples "Federico II, " Via Domenico Montesano 49, 80131, Naples, Italy
| | - Giuseppina Sorrentino
- Department of Pharmacy, University of Naples "Federico II, " Via Domenico Montesano 49, 80131, Naples, Italy
| | - Sima Singh
- Department of Pharmacy, University of Naples "Federico II, " Via Domenico Montesano 49, 80131, Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples "Federico II, " Via Domenico Montesano 49, 80131, Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Sergio Pansini 5, 80131, Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples "Federico II, " Via Domenico Montesano 49, 80131, Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples "Federico II, " Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II, " Via Domenico Montesano 49, 80131, Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
- Bioelectronics Task Force at University of Naples Federico II, Via Cinthia 21, 80126, Naples, Italy.
| |
Collapse
|
2
|
Yang DN, Wu SY, Deng HY, Zhang H, Shi S, Geng S. Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer. BIOSENSORS 2024; 14:250. [PMID: 38785724 PMCID: PMC11118845 DOI: 10.3390/bios14050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
As one of the biomarkers of coagulation system-related diseases, the detection of thrombin is of practical importance. Thus, this study developed a portable biosensor based on a personal glucometer for rapid detection of thrombin activity. Fibrinogen was used for the detection of thrombin, and the assay principle was inspired by the blood coagulation process, where thrombin hydrolyzes fibrinogen to produce a fibrin hydrogel, and the amount of invertase encapsulated in the fibrin hydrogel fluctuates in accordance with the activity of thrombin in the sample solution. The quantitative assay is conducted by measuring the amount of unencapsulated invertase available to hydrolyze the substrate sucrose, and the signal readout is recorded using a personal glucometer. A linear detection range of 0-0.8 U/mL of thrombin with a limit of detection of 0.04 U/mL was obtained based on the personal glucometer sensing platform. The results of the selectivity and interference experiments showed that the developed personal glucometer sensing platform is highly selective and accurate for thrombin activity. Finally, the reliability of the portable glucometer method for rapid thrombin detection in serum samples was investigated by measuring the recovery rate, which ranged from 92.8% to 107.7%. In summary, the fibrin hydrogel sensing platform proposed in this study offers a portable and versatile means for detecting thrombin using a personal glucometer. This approach not only simplifies the detection process, but also eliminates the need for large instruments and skilled operators, and substantially reduces detection costs.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (H.-Y.D.)
| | - Shu-Yi Wu
- Basic Medical College, Chongqing College of Traditional Chinese Medicine, Chongqing 402360, China;
| | - Han-Yu Deng
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (H.-Y.D.)
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (H.-Y.D.)
| | - Shan Shi
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Shan Geng
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| |
Collapse
|
3
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
4
|
Liu H, Fu Y, Yang R, Guo J, Guo J. Surface plasmonic biosensors: principles, designs and applications. Analyst 2023; 148:6146-6160. [PMID: 37921208 DOI: 10.1039/d3an01241g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Recently, surface plasmon resonance (SPR) biosensors have been widely used in environmental monitoring, food contamination detection and diagnosing medical conditions due to their superior sensitivity, label-free detection and rapid analysis speed. This paper briefly elaborates on the development history of SPR technology and introduces SPR signal sensing principles. A summary of recent applications of SPR sensors in different fields is highlighted, including their figures of merit and limitations. Finally, the personal perspectives and future development trends about sensor preparation and design are discussed in detail, which may be critical for improving the performance of SPR sensors.
Collapse
Affiliation(s)
- Hao Liu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Yusheng Fu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Rongzhi Yang
- University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
5
|
de Barros HR, López-Gallego F, Liz-Marzán LM. Light-Driven Catalytic Regulation of Enzymes at the Interface with Plasmonic Nanomaterials. Biochemistry 2021; 60:991-998. [PMID: 32643921 DOI: 10.1021/acs.biochem.0c00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of enzymes is highly relevant toward orchestrating cell-free and stepwise biotransformations, thereby maximizing their overall performance. Plasmonic nanomaterials offer a great opportunity to tune the functionality of enzymes through their remarkable optical properties. Localized surface plasmon resonances (LSPR) can be used to modify chemical transformations at the nanomaterial's surface, upon light irradiation. Incident light can promote energetic processes, which may be related to an increase of local temperature (photothermal effects) but also to effects triggered by generated hotspots or hot electrons (photoelectronic effects). As a consequence, light irradiation of the protein-nanomaterial interface affects enzyme functionality. To harness these effects to finely and remotely regulate enzyme activity, the physicochemical features of the nanomaterial, properties of the incident light, and parameters governing molecular interactions must be optimized. In this Perspective, we discuss relevant examples that illustrate the use of plasmonic nanoparticles to control enzyme function through LSPR excitation. Finally, we also highlight the importance of expanding the use of plasmonic nanomaterials to the immobilization of multienzyme systems for light-driven regulation of cell-free biosynthetic pathways. Although this concept is living its infancy, we encourage the scientific community to advance in the development of novel light-controlled biocatalytic plasmonic nanoconjugates and explore their application in biosensing, applied biocatalysis, and biomedicine.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, São Paulo Brazil
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingenierı́a, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
| |
Collapse
|
6
|
Liu J, Jalali M, Mahshid S, Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2019; 145:364-384. [PMID: 31832630 DOI: 10.1039/c9an02149c] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmonics has drawn significant attention in the area of biosensors for decades due to the unique optical properties of plasmonic resonant nanostructures. While the sensitivity and specificity of molecular detection relies significantly on the resonance conditions, significant attention has been dedicated to the design, fabrication, and optimization of plasmonic substrates. The adequate choice of materials, structures, and functionality goes hand in hand with a fundamental understanding of plasmonics to enable the development of practical biosensors that can be deployed in real life situations. Here we provide a brief review of plasmonic biosensors detailing most recent developments and applications. Besides metals, novel plasmonic materials such as graphene are highlighted. Sensors based on Surface Plasmon Resonance (SPR), Localized Surface Plasmon Resonance (LSPR), and Surface Enhanced Raman Spectroscopy (SERS) are presented and classified based on their materials and structure. In addition, most recent applications to environment monitoring, health diagnosis, and food safety are presented. Potential problems related to the implementation in such applications are discussed and an outlook is presented.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
7
|
Su Y, Zhang Q, Miao X, Wen S, Yu S, Chu Y, Lu X, Jiang LP, Zhu JJ. Spatially Engineered Janus Hybrid Nanozyme toward SERS Liquid Biopsy at Nano/Microscales. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41979-41987. [PMID: 31621282 DOI: 10.1021/acsami.9b17618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials with intrinsic enzyme-mimicking properties (nanozymes) have been widely considered as artificial enzymes in biomedicine. However, manipulating inorganic nanozymes for multivariant targeted bioanalysis is still challenging because of the insufficient catalytic efficiency and biological blocking effect. Here, we rationally designed a spatially engineered hollow Janus hybrid nanozyme vector (h-JHNzyme) based on the bifacial modulation of Ag-Au nanocages. The silver face inside the h-JHNzyme served as an interior gate to promote the enzymatic activity of the Ag-Au nanozyme, whereas two-dimensional DNAzyme-motif nanobrushes deposited on the exterior surface of the h-JHNzyme endowed it with the targeting function and tremendously enhanced the peroxidase-mimicking activity. We demonstrated that the spatially separated modulation of the h-JHNzyme propelled it as a powerful "all-in-one" enzymatic vector with excellent biocompatibility, specific vectorization, remarkable enzymatic performance, and clinical practicability. Further, we programmed it into a stringent catalytic surface-enhanced Raman scattering (SERS) liquid biopsy platform to trace multidimensional tumor-related biomarkers, such as microRNAs and circulating tumor cells, with a limit of detection of fM and single cell level, respectively. The developed enzymatic platform showed great potential in facilitating reliable quantitative SERS liquid biopsy for on-demand clinical diagnosis.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xuran Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Shengping Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
8
|
Wang H, Rao H, Luo M, Xue X, Xue Z, Lu X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Mixed monolayer decorated SPR sensing surface for thrombin detection. J Pharm Biomed Anal 2019; 176:112822. [PMID: 31454662 DOI: 10.1016/j.jpba.2019.112822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 01/28/2023]
Abstract
The development of surface plasmon resonance (SPR) based immunosensor for thrombin detection was aimed. For this purpose, 3,3' Dithiodipropionic acid di (N-hydroxysuccinimide ester) (DSP):6-mercapto-1-hexanol (MCH) mixed self-assembled monolayers (mSAMs) were formed on gold surfaces for immobilization of anti-thrombin antibody. The performance of the immunosensor was determined against the target protein thrombin at various concentrations using flow cell coupled SPR. The linear detection range of the immunosensor was 30.0-100.0 nM with an R2 value of 0,992. Limit of Detection (LOD) and Limit of Quantification (LOQ) were determined to be 6.0 nM and 30.0 nM, respectively. The selectivity of the immunosensor was tested against a non-target model protein, human serum albumin (HSA) and the obtained ΔRU value was found to be below the ΔRU value corresponding to the LOQ concentration for thrombin. The immunosensor's capability to detect thrombin in diluted complex serum matrix was also tested and the obtained ΔRU value (159 ± 16) was compared with ΔRU value obtained for thrombin detection in PBS solution (137 ± 19). Based on the results, it was shown that DSP:MCH interface is a promising immobilization platform for binding biological recognition elements for the development of biosensors.
Collapse
|
10
|
Díez‐Buitrago B, Barroso J, Saa L, Briz N, Pavlov V. Facile Synthesis and Characterization of Ag/Ag
2
S Nanoparticles Enzymatically Grown In Situ and their Application to the Colorimetric Detection of Glucose Oxidase. ChemistrySelect 2019. [DOI: 10.1002/slct.201901673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Beatriz Díez‐Buitrago
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Javier Barroso
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Laura Saa
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Nerea Briz
- Paseo Mikeletegi 2 20009 Donostia-San Sebastián Spain
| | - Valeri Pavlov
- CIC biomaGUNEPaseo Miramón 182 20014 Donostia-San Sebastián Spain
| |
Collapse
|
11
|
Huang R, Xiong LL, Chai HH, Fu JJ, Lu Z, Yu L. Sensitive colorimetric detection of ochratoxin A by a dual-functional Au/Fe3O4 nanohybrid-based aptasensor. RSC Adv 2019; 9:38590-38596. [PMID: 35540181 PMCID: PMC9075840 DOI: 10.1039/c9ra07899a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
A novel colorimetric aptasensor based on a Au/Fe3O4 nanohybrid was developed to detect ochratoxin A (OTA). The aptasensor is composed of a free OTA aptamer, a Au/Fe3O4 nanohybrid coated with biotinylated complementary DNA of the OTA aptamer (biotin-cDNA-Au/Fe3O4), and free alkaline-phosphatase-labeled streptavidin (SA-ALP). The Au/Fe3O4 nanohybrid not only immobilizes biotin-cDNA but also magnetically separates SA-ALP from the sample solution. One part of the OTA aptamer sequence hybridizes with biotin-cDNA immobilized on Au/Fe3O4, and the left part of the OTA aptamer sequence covers the biotin and blocks the specific interaction between biotin and SA-ALP. OTA can interrupt the interaction of OTA aptamer binding to biotin-cDNA-Au/Fe3O4 and can inhibit the shielding effect of the OTA aptamer on biotin. The amount of SA-ALP that can be captured by biotin-cDNA-Au/Fe3O4 thus increases with increasing OTA concentration. Through a simple magnetic separation, the collected SA-ALP-linked Au/Fe3O4 can produce a yellow-colored solution in the presence of p-nitrophenyl phosphate (p-NPP). This colorimetric aptasensor can detect OTA as low as 1.15 ng mL−1 with high specificity. A novel colorimetric aptasensor based on a Au/Fe3O4 nanohybrid was developed to detect ochratoxin A (OTA).![]()
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Lu Lu Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Hui Hui Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Jing Jing Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Zhisong Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- Institute for Clean Energy and Advanced Materials
- School of Materials and Energy
- Southwest University
| |
Collapse
|
12
|
Zhang L, Li X, Wang Y, Sun K, Chen X, Chen H, Zhou J. Reproducible Plasmonic Nanopyramid Array of Various Metals for Highly Sensitive Refractometric and Surface-Enhanced Raman Biosensing. ACS OMEGA 2018; 3:14181-14187. [PMID: 30411061 PMCID: PMC6217687 DOI: 10.1021/acsomega.7b02016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Localized surface plasmon resonance (LSPR) biosensors show great potential for practical/commercial use in clinical diagnosis, home healthcare, environmental analysis, and public healthcare. However, two main issues, that is, low refractometric sensitivity and low reproducibility (large-area uniformity and batch-to-batch consistency), hinder the extensive applications of LSPR biosensors. Therefore, plasmonic nanostructures with high sensitivity and excellent reproducibility are desirable for preparing reliable LSPR sensors. Herein, we have fabricated plasmonic nanopyramid arrays (NPAs) for several batches with reproducible morphology and optical properties by elastic soft lithography and metal thermal evaporation. NPAs of various metals (i.e., Al, Au, and Ag) were also prepared by thermal evaporation with the according metals. The transmission spectra of these NPAs showed several narrow LSPR peaks in the visible-infrared wavelength region. The refractometric sensitivities of the LSPR peaks were systematically studied, and high refractometric sensitivities of 774.0, 472.8, and 421.0 nm/RIU were achieved on Al, Au, and Ag NPAs, respectively. To demonstrate the potential of the NPAs for multiplex applications, we first applied this highly sensitive Al NPA biosensor to monitoring the process of proliferation of HeLa cancer cells, in situ and in real time. Then, we demonstrated that the Au NPA was able to identify the absorbed analytes on its surface through the surface-enhanced Raman scattering spectrum. In addition, the finite difference time domain simulations were performed to reveal the electromagnetic field enhancement on NPAs. Because of the properties of high sensitivity and excellent reproducibility of the metal NPA LSPR substrates, as well as the simplicity and cost efficiency of the fabrication method, our proposed work will accelerate the practical use of LSPR sensors.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuemeng Li
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangyang Wang
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kang Sun
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuexian Chen
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanjun Chen
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhua Zhou
- Key Laboratory of
Sensing Technology and Biomedical Instruments of
Guangdong Province, School of Engineering and State Key Lab of Optoelectronic
Materials and Technologies, Guangdong Province Key Laboratory of Display
Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron 2018; 114:52-65. [DOI: 10.1016/j.bios.2018.05.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
14
|
Díez-Buitrago B, Briz N, Liz-Marzán LM, Pavlov V. Biosensing strategies based on enzymatic reactions and nanoparticles. Analyst 2018; 143:1727-1734. [DOI: 10.1039/c7an02067h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Application of new nanomaterials to detection of enzymatic activities allows the development of new sensitive and selective bioanalytical assays based on enzymes for recognition and signal amplification.
Collapse
Affiliation(s)
| | - Nerea Briz
- Tecnalia
- 20009 Donostia-San Sebastián
- Spain
| | - Luis M. Liz-Marzán
- CIC BiomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Ikerbasque
- Basque Foundation for Science
| | | |
Collapse
|
15
|
Liu C, Yang W, Du J, Shen P, Yang C. A Boron 2-(2′-pyridyl) Imidazole Fluorescence Probe for Bovine Serum Albumin: Discrimination over Other Proteins and Identification of Its Denaturation. Photochem Photobiol 2017; 93:1414-1422. [DOI: 10.1111/php.12789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Chunlin Liu
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang China
| | - Wei Yang
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang China
| | - Jinya Du
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang China
| | - Ping Shen
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang China
| | - Changying Yang
- College of Biological and Pharmaceutical Science; China Three Gorges University; Yichang China
| |
Collapse
|
16
|
Abstract
Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.
Collapse
Affiliation(s)
- Longhua Tang
- State
Key Laboratory of Modern Optical Instrumentation, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jinghong Li
- Department
of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Luo Z, Wang Y, Lu X, Chen J, Wei F, Huang Z, Zhou C, Duan Y. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal Chim Acta 2017; 984:177-184. [PMID: 28843561 DOI: 10.1016/j.aca.2017.06.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
Antibiotic abuse has been bringing serious pollution in water, which is closely related to human health. It is desirable to develop a new strategy for antibiotic detection. To address this problem, a sensitive fluorescent aptasensor for antibiotic detection was developed by utilizing gold nanoparticles modified magnetic bead composites (AuNPs/MBs) and nicking enzyme. AuNPs/MBs were synthesized with the help of polyethylenimine (PEI). The prepared AuNPs/MBs acted as dual-functional scaffolds that owned excellent magnetic separation capacity and strong covalent bio-conjugation. The non-specifically absorbed aptamers in AuNPs/MBs were less than that in MBs. Hence, the fluorescent aptasensor based on AuNPs/MBs show a better signal to background ratio than that based on carboxyl modified magnetic beads (MBs). In this work, ampicillin was employed as a model analyte. In the presence of ampicillin, the specific binding between ampicillin and aptamer induced structure-switching that led to the release of partial complementary DNA (cDNA) of aptamer. Then, the released cDNA initiated the cycle of nicking enzyme assisted signal amplification (NEASA). Therefore, a large amount of taqman probes were cleaved and fluorescence signal was amplified. The prepared fluorescent aptasensor bring sensitive detection in range of 0.1-100 ng mL-1 with the limit of detection of 0.07 ng mL-1. Furthermore, this aptasensor was also successfully applied in real sample detection with acceptable accuracy. The fluorescent aptasensor provides a promising method for efficient, rapid and sensitive antibiotic detection.
Collapse
Affiliation(s)
- Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yimin Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xiaoyong Lu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Junman Chen
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Chen Zhou
- Department of Laboratory Science in Public Health, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
18
|
He J, Li G, Hu Y. Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: Highly selective and sensitive determination of thrombin and oxytetracycline. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2263-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-1203-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Liu D, Zhuang Q, Zhang L, Zhang H, Wu S, Kikuchi JI, Han Z, Zhang Q, Song XM. Self-assembly of novel fluorescent quantum dot-cerasome hybrid for bioelectrochemistry. Talanta 2016; 154:31-7. [DOI: 10.1016/j.talanta.2016.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 01/24/2023]
|
21
|
Zhuang Y, Xu Q, Huang F, Gao P, Zhao Z, Lou X, Xia F. Ratiometric Fluorescent Bioprobe for Highly Reproducible Detection of Telomerase in Bloody Urines of Bladder Cancer Patients. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00076] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan Zhuang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Xu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fujian Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengcheng Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zujin Zhao
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Zhao D, Peng Y, Xu L, Zhou W, Wang Q, Guo L. Liquid-Crystal Biosensor Based on Nickel-Nanosphere-Induced Homeotropic Alignment for the Amplified Detection of Thrombin. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23418-22. [PMID: 26458050 DOI: 10.1021/acsami.5b08924] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A new liquid-crystal (LC)-based sensor operated by nickel nanosphere (NiNS)-induced homeotropic alignment for the label-free monitoring of thrombin was reported. When doped with NiNSs, a uniform vertical orientation of 4-cyano-4'-pentylbiphenyl (5CB) was easily obtained. A sandwich system of aptamer/thrombin/aptamer-functionalized gold nanoparticles (AuNPs) was fabricated, and AuNPs-aptamer conjugation caused the disruption of the 5CB orientation, leading to an obvious change of the optical appearance from a dark to a bright response to thrombin concentrations from 0.1 to 100 nM. This design also allowed quantitative detection of the thrombin concentration. This distinctive and sensitive thrombin LC sensor provides a new principle for building LC-sensing systems.
Collapse
Affiliation(s)
- Dongyu Zhao
- School of Chemistry and Environment Science, Beijing University of Aeronautics and Astronautics , Beijing 100191, China
| | - Yi Peng
- School of Chemistry and Environment Science, Beijing University of Aeronautics and Astronautics , Beijing 100191, China
| | - Lihong Xu
- School of Chemistry and Environment Science, Beijing University of Aeronautics and Astronautics , Beijing 100191, China
| | - Wei Zhou
- School of Chemistry and Environment Science, Beijing University of Aeronautics and Astronautics , Beijing 100191, China
| | - Qian Wang
- School of Chemistry and Environment Science, Beijing University of Aeronautics and Astronautics , Beijing 100191, China
| | - Lin Guo
- School of Chemistry and Environment Science, Beijing University of Aeronautics and Astronautics , Beijing 100191, China
| |
Collapse
|
23
|
Single nanoparticle plasmonic sensors. SENSORS 2015; 15:25774-92. [PMID: 26473866 PMCID: PMC4634464 DOI: 10.3390/s151025774] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/30/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022]
Abstract
The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.
Collapse
|
24
|
Label-free aptamer biosensor for selective detection of thrombin. Anal Chim Acta 2015; 899:85-90. [DOI: 10.1016/j.aca.2015.09.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
|