1
|
Küçük D, Üner G, İpek SL, Caglayan MO, Üstündağ Z. An impedimetric determination of zearalenone on MIP-modified carboceramic electrode. Toxicon 2024; 250:108115. [PMID: 39368557 DOI: 10.1016/j.toxicon.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin that poses significant risks to human and animal health due to its mutagenic, immunosuppressive, and carcinogenic properties. This study presents a novel analytical method for detecting ZEN using electrochemical impedance spectroscopy (EIS) combined with a molecularly imprinted polymer (MIP). ZEN, used as the template molecule, was incorporated into polypyrrole on screen-printed electrodes (SPE), and a ZEN-sensitive MIP sensor was created through template removal. The modified sensor surfaces were characterized by EIS and scanning electron microscopy (SEM). An impedimetric MIP sensor for ZEN was developed, offering a detection range from 1 pM to 500 pM. The method's limit of detection (LOD) was established at 1 pM (0.3 pg/mL) with a signal-to-noise ratio of 3 (S/N = 3). The method demonstrated high precision and accuracy, with a maximum relative standard deviation (RSD) of less than 4.4% at a 95% confidence level, and relative error (RE) values ranging from -0.8% to -2.7%. The selectivity of the developed MIP sensor was evaluated using ochratoxin A, ochratoxin B, and aflatoxin B1, with no significant interference observed. ZEN recovery from spiked samples was between 95% and 105%, indicating that the method was successfully applied to grain samples, including corn, rice, and wheat.
Collapse
Affiliation(s)
- Dilruba Küçük
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey
| | - Gülcan Üner
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey
| | - Semih Latif İpek
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey; Adana Alparslan Türkeş Science and Technology University, Department of Food Eng., Adana, Turkey.
| | | | - Zafer Üstündağ
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey.
| |
Collapse
|
2
|
Rapier CE, Jagadeesan S, Vatine GD, Ben-Yoav H. Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems. BIOSENSORS 2024; 14:374. [PMID: 39194604 DOI: 10.3390/bios14080374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth and monitoring to design, fabricate, and characterize a whole-channel impedance-based sensor and used it to systematically assess the electrical and electrochemical influences of microfluidic channel boundaries coupled with varying electrode sizes, distances, coatings, and cell coverage. Our investigation includes both theoretical and experimental approaches to investigate how design parameters and insulating boundary conditions change impedance characteristics. We examined the system with various solutions using a frequency range of 0.5 Hz to 1 MHz and a modulation voltage of 50 mV. The results show that impedance is directly proportional to electrode distance and inversely proportional to electrode coating, area, and channel size. We also demonstrate that electrode spacing is a dominant factor contributing to impedance. In the end, we summarize all the relationships found and comment on the appropriateness of using this system to investigate barrier cells in blood vessel models and organ-on-a-chip devices. This fundamental study can help in the careful design of microfluidic culture constructs and models that require channel geometries and impedance-based biosensing.
Collapse
Affiliation(s)
- Crystal E Rapier
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Faculty of Engineering Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 64, Rm 204, Beer Sheva 8410501, Israel
| | - Srikanth Jagadeesan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Regenerative Medicine and Stem Cell (RMSC) Research Center, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 42, Rm 326, Beer Sheva 8410501, Israel
| | - Gad D Vatine
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Regenerative Medicine and Stem Cell (RMSC) Research Center, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 42, Rm 326, Beer Sheva 8410501, Israel
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Faculty of Engineering Sciences, Ilse Katz Institute for Nanoscale Science and Technology, Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, Building 64, Rm 204, Beer Sheva 8410501, Israel
| |
Collapse
|
3
|
Lee E, Choi HK, Kwon Y, Lee KB. Real-Time, Non-Invasive Monitoring of Neuronal Differentiation Using Intein-Enabled Fluorescence Signal Translocation in Genetically Encoded Stem Cell-Based Biosensors. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2400394. [PMID: 39308638 PMCID: PMC11412434 DOI: 10.1002/adfm.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 09/25/2024]
Abstract
Real-time and non-invasive monitoring of neuronal differentiation will help increase our understanding of neuronal development and help develop regenerative stem cell therapies for neurodegenerative diseases. Traditionally, reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence (IF) staining have been widely used to investigate stem cell differentiation; however, their limitations include endpoint analysis, invasive nature of monitoring, and lack of single-cell-level resolution. Several limitations hamper current approaches to studying neural stem cell (NSC) differentiation. In particular, fixation and staining procedures can introduce artificial changes in cellular morphology, hindering our ability to accurately monitor the progression of the process and fully understand its functional aspects, particularly those related to cellular connectivity and neural network formation. Herein, we report a novel approach to monitor neuronal differentiation of NSCs non-invasively in real-time using cell-based biosensors (CBBs). Our research efforts focused on utilizing intein-mediated protein engineering to design and construct a highly sensitive biosensor capable of detecting a biomarker of neuronal differentiation, hippocalcin. Hippocalcin is a critical protein involved in neurogenesis, and the CBB functions by translocating a fluorescence signal to report the presence of hippocalcin externally. To construct the hippocalcin sensor proteins, hippocalcin bioreceptors, AP2 and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2), were fused to each split-intein carrying split-nuclear localization signal (NLS) peptides, respectively, and a fluorescent protein was introduced as a reporter. Protein splicing (PS) was triggered in the presence of hippocalcin to generate functional signal peptides, which promptly translocated the fluorescence signal to the nucleus. The stem cell-based biosensor showed fluorescence signal translocation only upon neuronal differentiation. Undifferentiated stem cells or cells that had differentiated into astrocytes or oligodendrocytes did not show fluorescence signal translocation. The number of differentiated neurons was consistent with that measured by conventional IF staining. Furthermore, this approach allowed for the monitoring of neuronal differentiation at an earlier stage than that detected using conventional approaches, and the translocation of fluorescence signal was monitored before the noticeable expression of class III β-tubulin (TuJ1), an early neuronal differentiation marker. We believe that these novel CBBs offer an alternative to current techniques by capturing the dynamics of differentiation progress at the single-cell level and by providing a tool to evaluate how NSCs efficiently differentiate into specific cell types, particularly neurons.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Wu J, He B, Wang Y, Zhao R, Zhang Y, Bai C, Wei M, Jin H, Ren W, Suo Z, Xu Y. ZIF-8 labelled a new electrochemical aptasensor based on PEI-PrGO/AuNWs for DON detection. Talanta 2024; 267:125257. [PMID: 37804788 DOI: 10.1016/j.talanta.2023.125257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
In this work, a novel ultrasensitive aptasensor for deoxynivalenol (DON) detection based on the polyethyleneimine-functionalised porous reduced graphene oxide loaded gold nanowires (PEI-PrGO/AuNWs) and methylene blue (MB)-labelled zeolitic imidazolate framework-8 (ZIF-8) signal amplification strategy was proposed. PEI-PrGO/AuNWs with large surface area and excellent conductivity were used as modification materials on bare gold electrodes, which could increase the combining of complementary strand (cDNA) on the electrode substrate and accelerate the electron transfer efficiency. Furthermore, a novel electrochemical signal probe was synthesized using streptavidin-modified zeolitic imidazolate framework-8 (ZIF-8/SA) as a carrier loaded with MB and reverse complementary chain (sDNA). In the presence of DON, the signal probe was introduced to the electrode surface by Watson-Crick base pairing after specific binding of DON to the aptamer (Apt). As expected, under the optimal conditions, the DON concentration was linearly related to the peak current generated by the prepared aptasensor, and the measured data were combined with theoretical calculations to obtain a detection limit of 2.23 × 10-9 mg/mL.
Collapse
Affiliation(s)
- Jia Wu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Yurong Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Chunqi Bai
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
5
|
Erdem A, Yildiz E, Senturk H, Maral M. Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis. J Pharm Biomed Anal 2023; 230:115385. [PMID: 37054602 DOI: 10.1016/j.jpba.2023.115385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Three-dimensional (3D) printing technology has been applied in many areas. In recent years, new generation biosensorshave been emerged with the progress on 3D printing technology (3DPT) . Especially in the development of optical and electrochemical biosensors, 3DPT provides many advantages such as low cost, easy to manufacturing, being disposable and allow point of care testing. In this review, recent trends in the development of 3DPT based electrochemical and optical biosensors with their applications in the field of biomedical and pharmaceutical are examined. In addition, the advantages, disadvantages and future opportunities of 3DPT are discussed.
Collapse
|
6
|
Wang L, Cao H, Jiang H, Fang Y, Jiang D. A novel 3D bio-printing “liver lobule” microtissue biosensor for the detection of AFB1. Food Res Int 2023; 168:112778. [PMID: 37120227 DOI: 10.1016/j.foodres.2023.112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
In this paper, a novel "liver lobule" microtissue biosensor based on 3D bio-printing is developed to rapidly determine aflatoxin B1 (AFB1). Methylacylated Hyaluronic acid (HAMA) hydrogel, HepG2 cells, and carbon nanotubes are used to construct "liver lobule" models. In addition, 3D bio-printing is used to perform high-throughput and standardized preparation in order to simulate the organ morphology and induce functional formation. Afterwards, based on the electrochemical rapid detection technology, a 3D bio-printed "liver lobule" microtissue is immobilized on the screen-printed electrode, and the mycotoxin is detected by differential pulse voltammetry (DPV). The DPV response increases with the concentration of AFB1 in the range of 0.1-3.5 μg/mL. The linear detection range is 0.1-1.5 μg/mL and the calculated lowest detection limit is 0.039 μg/mL. Thus, this study develops a new mycotoxin detection method based on the 3D printing technology, which has high stability and reproducibility. It has wide application prospects in the field of detection and evaluation of food hazards.
Collapse
Affiliation(s)
- Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hanwen Cao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, PR China
| | - Yan Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
7
|
Wei X, Liu C, Li Z, Sun Q, Zhang X, Li Y, Zhang W, Shi J, Zhai X, Zhang D, Zou X. Fabrication of a label-free electrochemical cell-based biosensor for toxicity assessment of thiram. CHEMOSPHERE 2022; 307:135960. [PMID: 35961445 DOI: 10.1016/j.chemosphere.2022.135960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Thiram has been widely used in agriculture and may invades the food chain, posing a threat to human health. In this research, a label-free electrochemical cell-based biosensor was presented for in vitro toxicity assessment of thiram. HepG2 cells were cultured on poly-l-lysine@gold nano-flowers functionalized indium tin oxide coated glass electrode (PLL@AuNFs/ITO) to serve as biorecognition elements. AuNFs were electrodeposited on ITO to provide an enlarged specific surface area and benefited the output signal amplification. PLL was selected as an effective biocompatible coating material to facilitate cell adhesion and proliferation, thereby realizing one-step recording of electrochemical signals from thiram-treated cells. With the aid of the differential pulse voltammetry method, the fabricated biosensor was applied to assess the cytotoxicity of thiram. Results showed that the cytotoxicity measured by the fabricated biosensor exhibited a linear relationship related to thiram concentration ranging from 5 to 50 μM with a detection limit of 2.23 μM. The IC50 of thiram obtained by the biosensor was 29.5 μM, which was close to that of conventional MTT assay (30.8 μM). The effects of thiram on HepG2 cells were also investigated via SEM and flow cytometry. Meanwhile, the proposed biosensor was used to evaluate the toxicity of thiram in fruit samples. Results indicated that the toxicity of thiram cannot be ignored even at a low residual concentration in food (≤5 mg/kg). In conclusion, the developed sensor showed excellent sensitivity, stability, and reliability, which provided a great capacity for the convenient toxicity evaluation of thiram residue in food.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Chao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Yanxiao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Wen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| |
Collapse
|
8
|
Eghbal M, Rozman M, Kononenko V, Hočevar M, Drobne D. A549 Cell-Covered Electrodes as a Sensing Element for Detection of Effects of Zn 2+ Ions in a Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3493. [PMID: 36234621 PMCID: PMC9565818 DOI: 10.3390/nano12193493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+ ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their death and detachment from the electrode surface as cytotoxic effects were detected through changes in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were checked by light microscopy, while the cell morphology and attachment pattern were explored by scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their cytotoxic concentrations.
Collapse
Affiliation(s)
- Mina Eghbal
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Martin Rozman
- FunGlass—Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Cheng S, Khan M, Yin F, Ma C, Yuan J, Jiang T, Liu X, Hu Q. Surface-anchored liquid crystal droplets for the semi-quantitative detection of Aflatoxin B1 in food samples. Food Chem 2022; 390:133202. [DOI: 10.1016/j.foodchem.2022.133202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
|
10
|
Yan H, He B, Zhao R, Ren W, Suo Z, Xu Y, Zhang Y, Bai C, Yan H, Liu R. Electrochemical aptasensor based on Ce 3NbO 7/CeO 2@Au hollow nanospheres by using Nb.BbvCI-triggered and bipedal DNA walker amplification strategy for zearalenone detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129491. [PMID: 35785741 DOI: 10.1016/j.jhazmat.2022.129491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Herein, an electrochemical aptasensor combining Nb.BbvCI-triggered bipedal DNA walking strategy was constructed for ultrasensitive assay of zearalenone (ZEN). The aptasensor used Ce3NbO7/CeO2 @Au hollow nanospheres as electrode modification material and PdNi@MnO2/MB as the signal label. Importantly, the Ce3NbO7/CeO2 synthesized by hydrothermal method were combined with Au nanoparticles and applied to the electrode surface. The as-prepared Ce3NbO7/CeO2 @Au possessed a large surface area, excellent electrical conductivity, stability and more binding sites. PdNi@MnO2 with high specific surface area and porosity combined with molecule methylene blue (MB) was introduced into electrodes as the signal label. The proposed aptasensor utilized the advantages of specific recognition of aptamers and target molecules to release bipedal DNA walker (w-DNA), and then the w-DNA was triggered by Nb.BbvCI and entered the cycle to release more signal probes. The feasibility of this strategy was recorded by the differential pulse voltammetry (DPV) method. Under the optimized conditions, the electrochemical aptasensor exhibited a wide linear dynamic range from 1 × 10-4 to 1 × 103 ng mL-1 with a low detection limit of 4.57 × 10-6 ng mL-1. Moreover, the aptasensor had high selectivity, good stability, excellent repeatability and provided an effective method for the trace detection of ZEN in real samples.
Collapse
Affiliation(s)
- Han Yan
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yurong Zhang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Chunqi Bai
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Haoyang Yan
- School of International Education, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Renli Liu
- Sinograin Zhengzhou Depot Ltd. Company, Zhengzhou, Henan 450066, PR China
| |
Collapse
|
11
|
Shen H, Duan M, Gao J, Wu Y, Jiang Q, Wu J, Li X, Jiang S, Ma X, Wu M, Tan B, Yin Y. ECIS-based biosensors for real-time monitor and classification of the intestinal epithelial barrier damages. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Ye Y, Sun X, Zhang Y, Han X, Sun X. A novel cell-based electrochemical biosensor based on MnO2 catalysis for antioxidant activity evaluation of anthocyanins. Biosens Bioelectron 2022; 202:113990. [DOI: 10.1016/j.bios.2022.113990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 01/22/2023]
|
13
|
Hassani S, Maghsoudi AS, Akmal MR, Shoeibi S, Ghadipasha F, Mousavi T, Ganjali MR, Hosseini R, Abdollahi M. A novel approach to design electrochemical aptamer-based biosensor for ultrasensitive detecting of zearalenone as a prevalent estrogenic mycotoxin. Curr Med Chem 2021; 29:5881-5894. [PMID: 34906054 DOI: 10.2174/0929867328666211214165814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zearalenone is a well-known estrogenic mycotoxin produced by Fusarium species, a serious threat to the agricultural and food industries worldwide. Zearalenone, with its known metabolites, are biomarkers of exposure to certain fungi, primarily through food. It has considerable toxic effects on biological systems due to its carcinogenicity, mutagenicity, renal toxicity, teratogenicity, and immunotoxicity. INTRODUCTION This study aims to design a simple, quick, precise, and cost-effective method on a biosensor platform to evaluate the low levels of this toxin in foodstuffs and agricultural products. METHODS An aptamer-based electrochemical biosensor was introduced that utilizes screen-printed gold electrodes instead of conventional electrodes. The electrode position process was employed to develop a gold nanoparticle-modified surface to enhance the electroactive surface area. Thiolated aptamers were immobilized on the surface of gold nanoparticles, and subsequently, the blocker and analyte were added to the modified surface. In the presence of a redox probe, electrochemical characterization of differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy were used to investigate the various stages of aptasensor fabrication. RESULTS The proposed aptasensor for zearalenone concentration had a wide linear dynamic range covering the 0.5 pg/mL to 100 ng/mL with a 0.14 pg/mL detection limit. Moreover, this aptasensor had high specificity so that a non-specific analyte cannot negatively affect the selectivity of the aptasensor. CONCLUSION Overall, due to its simple design, high sensitivity, and fast performance, this aptasensor showed a high potential for assessing zearalenone in real samples, providing a clear perspective for designing a portable and cost-effective device.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Armin Salek Maghsoudi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Shahram Shoeibi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Fatemeh Ghadipasha
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran. Iran
| | - Rohollah Hosseini
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
14
|
|
15
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
16
|
Electrochemical Cell-Based Sensor for Detection of Food Hazards. MICROMACHINES 2021; 12:mi12070837. [PMID: 34357247 PMCID: PMC8306248 DOI: 10.3390/mi12070837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
People’s health has been threatened by several common food hazards. Thus, it is very important to establish rapid and accurate methods to detect food hazards. In recent years, biosensors have inspired developments because of their specificity and sensitivity, short reaction time, low cost, small size and easy operation. Owing to their high precision and non-destructive characteristics, cell-based electrochemical detection methods can reflect the damage of food hazards to organisms better. In this review, the characteristics of electrochemical cell-based biosensors and their applications in the detection of common hazards in food are reviewed. The strategies of cell immobilization and 3D culture on electrodes are discussed. The current limitations and further development prospects of cell-based electrochemical biosensors are also evaluated.
Collapse
|
17
|
Jiang D, Sheng K, Gui G, Jiang H, Liu X, Wang L. A novel smartphone-based electrochemical cell sensor for evaluating the toxicity of heavy metal ions Cd 2+, Hg 2+, and Pb 2+ in rice. Anal Bioanal Chem 2021; 413:4277-4287. [PMID: 34057556 DOI: 10.1007/s00216-021-03379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
A novel smartphone-based electrochemical cell sensor was developed to evaluate the toxicity of heavy metal ions, such as cadmium (Cd2+), lead (Pb2+), and mercury (Hg2+) ions on Hep G2 cells. The cell sensor was fabricated with reduced graphene oxide (RGO)/molybdenum sulfide (MoS2) composites to greatly improve the biological adaptability and amplify the electrochemical signals. Differential pulse voltammetry (DPV) was employed to measure the electrical signals induced by the toxicity of heavy metal ions. The results showed that Cd2+, Hg2+, and Pb2+ significantly reduced the viability of Hep G2 cells in a dose-dependent manner. The IC50 values obtained by this method were 49.83, 36.94, and 733.90 μM, respectively. A synergistic effect was observed between Cd2+ and Pb2+ and between Hg2+ and Pb2+, and an antagonistic effect was observed between Cd2+ and Hg2+, and an antagonistic effect at low doses and an additive effect at high doses were found in the ternary mixtures of Cd2+, Hg2+, and Pb2+. These electrochemical results were confirmed via MTT assay, SEM and TEM observation, and flow cytometry. Therefore, this new electrochemical cell sensor provided a more convenient, sensitive, and flexible toxicity assessment strategy than traditional cytotoxicity assessment methods.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Kaikai Sheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Guoyue Gui
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, Jiangsu, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
18
|
Cao L, Jiang Y, Zhu L, Xu W, Chu X, Zhang Y, Rahman SU, Feng S, Li Y, Wu J, Wang X. Deoxynivalenol Induces Caspase-8-Mediated Apoptosis through the Mitochondrial Pathway in Hippocampal Nerve Cells of Piglet. Toxins (Basel) 2021; 13:toxins13020073. [PMID: 33498252 PMCID: PMC7909276 DOI: 10.3390/toxins13020073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Deoxynivalenol (DON) is a common trichothecene mycotoxin found worldwide. DON has broad toxicity towards animals and humans. However, the mechanism of DON-induced neurotoxicity in vitro has not been fully understood. This study investigated the hypothesis that DON toxicity in neurons occurs via the mitochondrial apoptotic pathway. Using piglet hippocampal nerve cells (PHNCs), we evaluated the effects of different concentrations of DON on typical indicators of apoptosis. The obtained results demonstrated that DON treatment inhibited PHNC proliferation and led to morphological, biochemical, and transcriptional changes consistent with apoptosis, including decreased mitochondrial membrane potential, mitochondrial release of cytochrome C (CYCS) and apoptosis inducing factor (AIF), and increased abundance of active cleaved-caspase-9 and cleaved-caspase-3. Increasing concentrations of DON led to decreased B-cell lymphoma-2 (Bcl-2) expression and increased expression of BCL2-associated X (Bax) and B-cell lymphoma-2 homology 3 interacting domain death agonist (Bid), which in turn increased transcriptional activity of the transcription factors AIF and P53 (a tumor suppressor gene, promotes apoptosis). The addition of a caspase-8 inhibitor abrogated these effects. These results reveal that DON induces apoptosis in PHNCs via the mitochondrial apoptosis pathway, and caspase-8 is shown to play an important role during apoptosis regulation.
Collapse
|
19
|
Wei K, Sun J, Gao Q, Yang X, Ye Y, Ji J, Sun X. 3D "honeycomb" cell/carbon nanofiber/gelatin methacryloyl (GelMA) modified screen-printed electrode for electrochemical assessment of the combined toxicity of deoxynivalenol family mycotoxins. Bioelectrochemistry 2021; 139:107743. [PMID: 33524655 DOI: 10.1016/j.bioelechem.2021.107743] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
A "honeycomb" electrochemical biosensor based on 3D printing was developed to noninvasively monitor the viability of 3D cells and evaluate the individual or combined toxicity of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON). Carbon nanofiber (CN)/gelatin methacryloyl (GelMA) conductive composite hydrogel with strong processability was printed on 8-channel screen-printed carbon electrodes (SPCEs) to maintain cell viability and form tight cell-to-cell contacts. A "3D honeycomb" printing infill pattern was selected in the construction of the biosensors to improve conductivity. Based on 3D printing technology, the electrochemical biosensor can prevent manual error and provide for high-throughput detection. Electrochemical impedance spectroscopy (EIS) was used to evaluate mycotoxin toxicity. The EIS response decreased with the concentration of DON, 3-ADON and 15-ADON in the range of 0.1-10, 0.05-100, and 0.1-10 μg/mL, respectively, with a limit of detection of 0.07, 0.10 and 0.06 μg/mL, respectively. Mycotoxin interactions were analyzed using the isobologram-combination index (CI) method. The electrochemical cytotoxicity evaluation result was confirmed by biological assays. Therefore, a novel method for evaluating the combined toxicity of mycotoxins is proposed, which exhibits potential for application to food safety and evaluation.
Collapse
Affiliation(s)
- Kaimin Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
20
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
21
|
He B, Wang L, Li M. A biosensor for direct bioelectrocatalysis detection of 3-MCPD in soy sauce using Cyt-c incorporated in Au@AgNSs/FeMOF nanocomposite. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02011-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
23
|
Jiang H, Yang J, Wan K, Jiang D, Jin C. Miniaturized Paper-Supported 3D Cell-Based Electrochemical Sensor for Bacterial Lipopolysaccharide Detection. ACS Sens 2020; 5:1325-1335. [PMID: 32274922 DOI: 10.1021/acssensors.9b02508] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive detection of lipopolysaccharides (LPSs), which are present on the outer wall of Gram-negative bacteria, is important to reflect the degree of bacterial contamination in food. For indirect assessment of the LPS content, a miniaturized electrochemical cell sensor consisting of a screen-printed paper electrode, a three-dimensional cells-in-gels-in-paper culture system, and a conductive jacket device was developed for in situ detection of nitric oxide released from LPS-treated mouse macrophage cells (Raw264.7). Nafion/polypyrrole/graphene oxide with excellent selectivity, high conductivity, and good biocompatibility functionalized on the working electrode via electrochemical polymerization could enhance sensing. Raw264.7 cells encapsulated in the alginate hydrogel were immobilized on a Nafion/polypyrrole/graphene oxide/screen-printed carbon electrode in paper fibers as a biorecognition element. Differential impulse voltammetry was employed to record the current signal as-influenced by LPS. Results indicated that LPS from Salmonella enterica serotype Enteritidis caused a significant increase in peak current, varying from 1 × 10-2 to 1 × 104 ng/mL, dose-dependently. This assay had a detection limit of 3.5 × 10-3 ng/mL with a linear detection range of 1 × 10-2 to 3 ng/mL. These results were confirmed by analysis of nitric oxide released from Raw264.7 via the Griess method. The miniaturized sensor was ultimately applied to detect LPSs in fruit juice samples. The results indicated that the method exhibited high recovery and relative standard deviation lower than 2.65% and LPSs in samples contaminated with 102-105 CFU/mL bacteria could be detected, which proved the practical value of the sensor. Thus, a novel, low-cost, and highly sensitive approach for LPS detection was developed, providing a method to assess Gram-negative bacteria contamination in food.
Collapse
Affiliation(s)
- Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, P. R. China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, P. R. China
| | - Kai Wan
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, and Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, P. R. China
| | - Changhai Jin
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| |
Collapse
|
24
|
Hu X, Wang C, Zhang M, Zhao F, Zeng B. Ionic liquid assisted molecular self-assemble and molecular imprinting on gold nanoparticles decorated boron-doped ordered mesoporous carbon for the detection of zearalenone. Talanta 2020; 217:121032. [PMID: 32498821 DOI: 10.1016/j.talanta.2020.121032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 01/05/2023]
Abstract
Accurate and early diagnosis of zearalenone (ZEN) is particularly significant to the food safety. Herein, we propose an ionic liquid assisted self-assembly molecular imprinting strategy for ZEN based on ionic liquid functionalized boron-doped ordered mesoporous carbon -gold nanoparticles composite (BOMC-IL-Au NPs). During the composite synthesis, increased well-dispersed and uniform Au NPs are deposited on the surface of IL modified BOMC, due to the strong electrostatic interaction between AuCl4- and positively charged IL. For molecular imprinting, the BOMC-IL-Au NPs/GCE is immersed into p-aminothiophenol (p-ATP) solution and template solution in turn. Thus, the mercapto group contained p-ATP self-assembles on the Au NPs. Subsequently, the template molecules self-assemble onto the composite to form dense template layer, because of the hydrophobic interaction, π-π and hydrogen bond between template and IL/or p-ATP. After electropolymerization, the template layer is embedded into the p-ATP polymer membrane and produces lots of imprinting sites. Hence, the obtained sensor exhibits high sensitivity and selectivity. Under the optimal conditions, zearalenone can be quantified from 5 × 10-4 to 1 ng mL-1 with the low detection limit of 1 × 10-4 ng mL-1, by using [Fe(CN)6]3-/4- probe and square wave voltammetry. This strategy can also be employed to construct sensors for the detection of other substances.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Caiyun Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Meng Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 30072, Hubei Province, PR China.
| |
Collapse
|
25
|
Chen Y, Yang Y, Wang Y, Peng Y, Nie J, Gao G, Zhi J. Development of an Escherichia coli-based electrochemical biosensor for mycotoxin toxicity detection. Bioelectrochemistry 2020; 133:107453. [PMID: 31972449 DOI: 10.1016/j.bioelechem.2019.107453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023]
Abstract
Mycotoxin contamination in food and feed is a global concern because mycotoxin contamination can cause both acute and chronic health effects in humans and animals. In the present work, an Escherichia coli-based biosensor is described for the toxicity assessment of aflatoxin B1 (AFB1) and zearalenone (ZEN). In this electrochemical biosensor, E. coli is used as the signal recognition element, p-benzoquinone is used as the mediator, and a two-step reaction procedure has been developed to separate the mediator from the mycotoxins. The current value of the as-prepared microbial biosensor exhibits a linear decrease with concentrations of AFB1 and ZEN in the range of 0.01-0.3 and 0.05-0.5 μg/mL, with detection limits reaching 1 and 6 ng/mL, respectively. The IC25 values obtained by the present method are 0.25 and 0.40 μg/mL for AFB1 and ZEN, which shows that the cytotoxicity of AFB1 to E. coli is more severe than the cytotoxicity of ZEN to E. coli. The combined toxic effect of these two mycotoxins has also been explored, and synergistic biotoxicity has been observed. Moreover, the biosensor is successfully applied to the toxicity evaluation of mycotoxins in real samples, including peanut and corn oils. This work could provide new insight into mycotoxin and microorganism interactions and could establish a new approach for future mycotoxin detection.
Collapse
Affiliation(s)
- Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yajie Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Wang
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Ye Peng
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, PR China
| | - Jinmei Nie
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
26
|
Caglayan MO, Üstündağ Z. Detection of zearalenone in an aptamer assay using attenuated internal reflection ellipsometry and it's cereal sample applications. Food Chem Toxicol 2019; 136:111081. [PMID: 31883987 DOI: 10.1016/j.fct.2019.111081] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Mycotoxins are toxic compounds produced by the metabolism of certain fungi that threaten the food and agricultural industry. Over hundreds of mycotoxins, one of the most common toxins, zearalenone (ZEN), has toxic effects on human and animal health due to its mutagenicity, treatogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. In this work, attenuated internal reflection spectroscopic ellipsometry (AIR-SE) combined with the signal amplification via surface plasmon resonance conditions that were proved to be a highly sensitive analytical tool in bio-sensing was developed for the sensitive and selective ZEN detection in cereal products such as corn, wheat, rice, and oat. Combined with the oligonucleotide aptamer for ZEN recognition, our proposed method showed good performance with yielding 0.08 ng/mL LOD and 0.01-1000 ng/mL detection range. A mini-review was also introduced in, to compare various methods for ZEN detection.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Kutahya Dumlupinar University, Chemistry Department, Kutahya, Turkey
| |
Collapse
|
27
|
|
28
|
Li X, Zhu P, Liu C, Pang H. One step synthesis of boron-doped carbon nitride derived from 4-pyridylboronic acid as biosensing platforms for assessment of food safety. Chem Commun (Camb) 2019; 55:9160-9163. [DOI: 10.1039/c9cc03787j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boron-doped carbon nitride nanosheets derived from a 4-pyridylboronic acid precursor are synthesized as biosensing platforms for assessment of food safety. The BCN-800-based electrochemical biosensor exhibits high sensitivity with a detection limit of 0.32 pg mL−1.
Collapse
Affiliation(s)
- Xiaxia Li
- School of Chemistry and Chemical Engineering
- Guangling College
- Yangzhou University
- Yangzhou
- P. R. China
| | - Peiyao Zhu
- School of Chemistry and Chemical Engineering
- Guangling College
- Yangzhou University
- Yangzhou
- P. R. China
| | - Chunsen Liu
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou
- China
| | - Huan Pang
- School of Chemistry and Chemical Engineering
- Guangling College
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
29
|
Chen Y, Zhang S, Hong Z, Lin Y, Dai H. A mimotope peptide-based dual-signal readout competitive enzyme-linked immunoassay for non-toxic detection of zearalenone. J Mater Chem B 2019; 7:6972-6980. [PMID: 31621766 DOI: 10.1039/c9tb01167f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, a mimotope peptide-based non-toxic photoelectrochemical (PEC) competitive enzyme-linked immunoassay (ELISA) was established for ultrasensitive detection of zearalenone (ZEN) with dual-signal readout.
Collapse
Affiliation(s)
- Yanjie Chen
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Shupei Zhang
- Fujian Provincial Maternity and Children's Hospital
- Affiliated hospital of Fujian Medical University
- Fuzhou
- China
| | - Zhensheng Hong
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
| | - Yanyu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, and Department of Chemistry
- Fuzhou University
- Fuzhou 350002
- P. R. China
| | - Hong Dai
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350108
- P. R. China
- Fujian Provincial Maternity and Children's Hospital
| |
Collapse
|
30
|
Ye Y, Guo H, Sun X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 2018; 126:389-404. [PMID: 30469077 DOI: 10.1016/j.bios.2018.10.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Food quality and safety has become a subject of major concern for authorities and professionals in the food supply chain. Rapid methods, particularly biosensors, have exceptional specificity and sensitivity, rapid response times, low cost, relatively compact size, and are user friendly to operate. Cell-based biosensors are portable, and provide the biological activity of the analyte suitable for an initial screening of food. In this overview, the utilization of cell-based biosensors for food safety and quality analyses, such as detecting toxins, foodborne pathogens, allergens, and evaluating toxicity and function are summarized. Our results will promote the future development of cell-based biosensors in the food field.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
31
|
Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim KH. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens Bioelectron 2018; 121:205-222. [PMID: 30219721 DOI: 10.1016/j.bios.2018.08.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Nanomaterial-embedded sensors have been developed and applied to monitor various targets. Mycotoxins are fungal secondary metabolites that can exert carcinogenic, mutagenic, teratogenic, immunotoxic, and estrogenic effects on humans and animals. Consequently, the need for the proper regulation on foodstuff and feed materials has been recognized from times long past. This review provides an overview of recent developments in electrochemical sensors and biosensors employed for the detection of mycotoxins. Basic aspects of the toxicity of mycotoxins and the implications of their detection are comprehensively discussed. Furthermore, the development of different molecular recognition elements and nanomaterials required for the detection of mycotoxins (such as portable biosensing systems for point-of-care analysis) is described. The current capabilities, limitations, and future challenges in mycotoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemistry, National Institute of Technology Warangal, Telangana 506004, India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, Gujarat, India.
| | - Vanish Kumar
- Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - S E Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
32
|
Wang D, Zhang Z, Zhang Q, Wang Z, Zhang W, Yu L, Li H, Jiang J, Li P. Rapid and sensitive double-label based immunochromatographic assay for zearalenone detection in cereals. Electrophoresis 2018; 39:2125-2130. [PMID: 29808596 DOI: 10.1002/elps.201800055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/05/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
Abstract
A double-label immunochromatographic based assay (DL-ICA) was developed to monitor zearalenone (ZEN) levels in cereals, based on Eu3+ nanoparticles (EuNP). The DL-ICA exhibited excellent sensitivity, reliability and selectivity in real samples. It showed low limits of detection (0.21-0.25 μg/kg) and broad analytical ranges (up to 120 μg/kg). The total analytical time, including sample preparation and DL-ICA execution, was reduced by 15 min compared with HPLC. The recovery rates ranged from 95.0-118.4%, with relative standard deviations (RSD) <11.6%. Inter- and intra-day validations were assessed, recovery rates of 89.3-106.9% and RSD of 2.3-9.7% were obtained, suggesting considerable stability and reliability for the assay. An excellent correlation was observed between DL-ICA and a reference HPLC method (R2 = 0.9899). Compared to current immunoassays, the current DL-ICA is inexpensive, highly sensitive, and rapid. Therefore, DL-ICA constitutes a novel tool for monitoring mycotoxins in food and feed to ensure safety.
Collapse
Affiliation(s)
- Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- National Reference Laboratory for Biotoxin Test, Wuhan, P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
| | - Zhongzheng Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- National Reference Laboratory for Biotoxin Test, Wuhan, P. R. China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- National Reference Laboratory for Biotoxin Test, Wuhan, P. R. China
| | - Hui Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Jun Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| |
Collapse
|
33
|
Li L, Chen H, Lv X, Wang M, Jiang X, Jiang Y, Wang H, Zhao Y, Xia L. Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals. Anal Bioanal Chem 2018; 410:2253-2262. [DOI: 10.1007/s00216-018-0895-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/17/2018] [Indexed: 02/04/2023]
|
34
|
A dual-amplified electrochemiluminescence immunosensor constructed on dual-roles of rutile TiO2 mesocrystals for ultrasensitive zearalenone detection. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Xia S, Zhu P, Pi F, Zhang Y, Li Y, Wang J, Sun X. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB 1. Biosens Bioelectron 2017. [DOI: 10.1016/j.bios.2017.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Liu CS, Sun CX, Tian JY, Wang ZW, Ji HF, Song YP, Zhang S, Zhang ZH, He LH, Du M. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety. Biosens Bioelectron 2017; 91:804-810. [DOI: 10.1016/j.bios.2017.01.059] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/21/2022]
|
37
|
Jiang H, Jiang D, Shao J, Sun X, Wang J. High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci Rep 2016; 6:36987. [PMID: 27841364 PMCID: PMC5107890 DOI: 10.1038/srep36987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/24/2016] [Indexed: 01/05/2023] Open
Abstract
Due to the high toxicity of bacterial lipopolysaccharide (LPS), resulting in sepsis and septic shock, two major causes of death worldwide, significant effort is directed toward the development of specific trace-level LPS detection systems. Here, we report sensitive, user-friendly, high-throughput LPS detection in a 96-well microplate using a transcriptional biosensor system, based on 293/hTLR4A-MD2-CD14 cells that are transformed by a red fluorescent protein (mCherry) gene under the transcriptional control of an NF-κB response element. The recognition of LPS activates the biosensor cell, TLR4, and the co-receptor-induced NF-κB signaling pathway, which results in the expression of mCherry fluorescent protein. The novel cell-based biosensor detects LPS with specificity at low concentration. The cell-based biosensor was evaluated by testing LPS isolated from 14 bacteria. Of the tested bacteria, 13 isolated Enterobacteraceous LPSs with hexa-acylated structures were found to increase red fluorescence and one penta-acylated LPS from Pseudomonadaceae appeared less potent. The proposed biosensor has potential for use in the LPS detection in foodstuff and biological products, as well as bacteria identification, assisting the control of foodborne diseases.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Donglei Jiang
- School of Food Science and Technology, Jiangsu Key Labortary of Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jingdong Shao
- Zhangjiagang Entry-Exit Inspection And Quarantine Bureau, Zhangjiagang, Jiangsu 215600, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiasheng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602, USA
| |
Collapse
|
38
|
Assunção R, Silva M, Alvito P. Challenges in risk assessment of multiple mycotoxins in food. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2016.2039] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most fungi are able to produce several mycotoxins simultaneously and, consequently, to contaminate a wide variety of foodstuffs. Therefore, the risk of human co-exposure to multiple mycotoxins is real, raising a growing concern about their potential impact on human health. Besides, government and industry regulations are usually based on individual toxicities, and do not take into account the complex dynamics associated with interactions between co-occurring groups of mycotoxins. The present work assembles, for the first time, the challenges posed by the likelihood of human co-exposure to these toxins and the possibility of interactive effects occurring after absorption, towards knowledge generation to support a more accurate human risk assessment. Regarding hazard assessment, a physiologically-based framework is proposed in order to infer the health effects from exposure to multiple mycotoxins in food, including knowledge on the bioaccessibility, toxicokinetics and toxicodynamics of single and combined toxins. The prioritisation of the most relevant mixtures to be tested under experimental conditions that attempt to mimic human exposure and the use of adequate mathematical approaches to evaluate interactions, particularly concerning the combined genotoxicity, were identified as the main challenges for hazard assessment. Regarding exposure assessment, the need of harmonised food consumption data, availability of multianalyte methods for mycotoxin quantification, management of left-censored data, use of probabilistic models and multibiomarker approaches are highlighted, in order to develop a more precise and realistic exposure assessment. To conclude, further studies on hazard and exposure assessment of multiple mycotoxins, using harmonised methodologies, are crucial towards an improvement of data quality and a more reliable and robust risk characterisation, which is central for risk management and, consequently, to prevent mycotoxins-associated adverse effects. A deep understanding of the nature of interactions between multiple mycotoxins will contribute to draw real conclusions on the health impact of human exposure to mycotoxin mixtures.
Collapse
Affiliation(s)
- R. Assunção
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago 3810-193 Aveiro, Portugal
- IIFA, Universidade de Évora, Palácio do Vimioso, Largo Marquês de Marialva, Apartado 94, 7002-554 Évora, Portugal
| | - M.J. Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), Nova Medical School, FCM-UNL, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - P. Alvito
- Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, I.P. (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago 3810-193 Aveiro, Portugal
| |
Collapse
|
39
|
Jiang H, Jiang D, Zhu P, Pi F, Ji J, Sun C, Sun J, Sun X. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosens Bioelectron 2016; 83:126-33. [DOI: 10.1016/j.bios.2016.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|
40
|
Lu L, Seenivasan R, Wang YC, Yu JH, Gunasekaran S. An Electrochemical Immunosensor for Rapid and Sensitive Detection of Mycotoxins Fumonisin B1 and Deoxynivalenol. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.096] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Wang X, Zhu P, Pi F, Jiang H, Shao J, Zhang Y, Sun X. A Sensitive and simple macrophage-based electrochemical biosensor for evaluating lipopolysaccharide cytotoxicity of pathogenic bacteria. Biosens Bioelectron 2016; 81:349-357. [DOI: 10.1016/j.bios.2016.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
|
42
|
Deng S, Yu X, Liu R, Chen W, Wang P. A two-compartment microfluidic device for long-term live cell detection based on surface plasmon resonance. BIOMICROFLUIDICS 2016; 10:044109. [PMID: 27570574 PMCID: PMC4975751 DOI: 10.1063/1.4960487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
A two-compartment microfluidic device integrated with a surface plasmon resonance (SPR) interferometric imaging system has been developed for long-term and real-time cell detection. The device uses a porous membrane sandwiched between two chambers to obtain an exact medium exchange rate and minimal fluid shear stress for cell culture. The two-compartment device was optimized by COMSOL simulations and fabricated using Poly (dimethylsiloxane) elastomer replica molding methods. To confirm the capability of the microfluidic device to maintain the cell physiological environment over long intervals, HeLa cells were cultured in the device for up to 48 h. The cell proliferation process was monitored by both SPR and microscopic time-lapse imaging. The SPR response showed four phases with different growth rates, and agreed well with the time-lapse imaging. Furthermore, real-time detection of cell behaviors under different doses of Paclitaxel and Cisplatin was performed. The SPR responses revealed dose-dependent inhibitions of cell proliferation, with distinct drug action kinetics.
Collapse
Affiliation(s)
- Shijie Deng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| | - Xinglong Yu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| | - Ran Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing 100084, People's Republic of China
| | - Weixing Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing 100084, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University , Beijing 100084, People's Republic of China
| |
Collapse
|
43
|
Qiu Z, Tang D, Shu J, Chen G, Tang D. Enzyme-triggered formation of enzyme-tyramine concatamers on nanogold-functionalized dendrimer for impedimetric detection of Hg(II) with sensitivity enhancement. Biosens Bioelectron 2016; 75:108-15. [DOI: 10.1016/j.bios.2015.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/08/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
|
44
|
Biosensor-Based Technologies for the Detection of Pathogens and Toxins. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|