1
|
Shan CW, Chen Z, Han GC, Feng XZ, Kraatz HB. Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta 2024; 271:125638. [PMID: 38237279 DOI: 10.1016/j.talanta.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein that has many important physiological functions, including transportation, immunosuppression, and induction of apoptosis by T lymphocytes. AFP is closely related to the development of hepatocellular carcinoma and many kinds of tumors, all of which can show high concentrations, so it is used as a positive test indicator for many kinds of tumors. This paper reviews recent advances in the detection of the tumor marker AFP based on three immuno-biosensors: electrochemical (EC), photoelectrochemical (PEC), and electrochemical luminescence (ECL). The electrodes are modified by different materials or homemade composites, different signaling molecules are selected as single probes or dual probes for the detection of AFP. The detection limit was as low as 3 fg/mL, which indicated that the AFP immunosensor had achieved highly sensitive detection. In addition, we also reviewed and summarized the current development status and application prospect of AFP immunoelectrochemical sensors. There are not too many researches on immunosensors based on dual-signal ratios, and the commonly used probes are methylene blue (MB) and ferrocene (Fc). It would be more innovative to have more novel signaling molecules as probes to prepare dual-signal ratio sensors.
Collapse
Affiliation(s)
- Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
2
|
Ding C, Ma S, Wang S, Liang R, Liu Y, Wang W, Chen H, Guo X, Wang J, Wei L. Photoelectrochemical sensing of isoniazid and streptomycin based on metal Bi-doped BiOI microspheres grown on book-shape layers of Ti 3C 2 heterostructures. Mikrochim Acta 2024; 191:260. [PMID: 38607575 DOI: 10.1007/s00604-024-06280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Isoniazid and streptomycin are vital drugs for treating tuberculosis, which are utilized as efficient anti-tuberculosis agents. This paper presents a novel visible-light-driven composite photocatalyst Ti3C2/Bi/BiOI, which was built from Ti3C2 nanosheets and Bi/BiOI microspheres. Photoelectrochemical (PEC) sensors based on Ti3C2/Bi/BiOI were synthesized for isoniazid identification, which showed a linear concentration range of 0.1-125 μM with a detection limit of 0.05 μM (S/N = 3). Moreover, we designed a PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI to detect streptomycin in 0.1 M PBS covering the electron donor isoniazid, because the isoniazid consumes photogenerated holes thus increasing the photocurrent effectively and preventing photogenerated electron-hole pairs from being recombined. Furthermore, PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI were synthesized for streptomycin identification, which exhibited a linear concentration range of 0.01-1000 nM with a detection limit of 2.3 × 10-3 nM (S/N = 3), and are well stable in streptomycin sensing.
Collapse
Affiliation(s)
- Chengzhi Ding
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Thoracic Surgery, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan provincial tuberculosis International Joint Laboratory, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Tuberculosis Diagnostic Medicine, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center of Tuberculosis, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shengnan Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuohao Wang
- Department of Engineering and Computing, Hong Kong Polytechnic University, Hong Kong, China
| | - Ruixia Liang
- Department of Tuberculosis, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Liu
- Department of Thoracic Surgery, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Henan provincial tuberculosis International Joint Laboratory, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Tuberculosis Diagnostic Medicine, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center of Tuberculosis, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Huihui Chen
- Henan provincial tuberculosis International Joint Laboratory, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Tuberculosis Diagnostic Medicine, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Clinical Medical Research Center of Tuberculosis, Henan Provincial Chest Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xufeng Guo
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China.
| |
Collapse
|
3
|
Jin Y, Zheng J, Ci Y, Zhu L, Zhang M, Yin XB. Magnetic copper silicate and boronic acid-conjugated AuNCs@keratin-based electrochemical/fluorescent dual-sensing for carcinoembryonic antigen. Talanta 2024; 266:125012. [PMID: 37542849 DOI: 10.1016/j.talanta.2023.125012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Boronic Acid Sensitivity, selectivity, and reliability are of great importance for tumor diagnosis. Herein, we proposed a novel electrochemical and fluorescent dual-sensing strategy to detect carcinoembryonic antigens (CEA). To this end, monodisperse spindle-like magnetic copper silicate (FeOx@C@CS) was prepared with multiple active sites to immobilize the CEA antibody. Moreover, magnetic properties improved the anti-interference ability and sensitivity to endow the assay for complex samples. In addition, boronic acid-conjugated gold nanocluster (AuNCs@keratin-BA) was prepared as an electrochemical and fluorescent dual-signal indicator. Thus, the sandwich structure of FeOx@C@CS/CEA/AuNCs@keratin-BA was formed for electrochemical/fluorescent dual-modality assay. Under optimal conditions, the quantitation range of 12.5 fg mL-1-37.5 pg mL-1 and detection limit of 4.3 fg mL-1 were obtained for the electrochemical strategy. The fluorescence detection owned the linear range of 0.05 pg mL-1-7.5 pg mL-1 with a detection limit of 0.025 pg mL-1. Dual-modality assay improved the accuracy and efficiency of CEA detection to meet the requirement of tumor diagnosis, while chemical identification and signal transduction lay an important foundation for engineering advanced nanomaterials for clinical applications.
Collapse
Affiliation(s)
- Yuqin Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Yanan Ci
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Linyu Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| |
Collapse
|
4
|
Liu Y, Li J, Das A, Kim H, Jones LO, Ma Q, Bedzyk MJ, Schatz GC, Kratish Y, Marks TJ. Synthesis and Structure-Activity Characterization of a Single-Site MoO 2 Catalytic Center Anchored on Reduced Graphene Oxide. J Am Chem Soc 2021; 143:21532-21540. [PMID: 34914390 DOI: 10.1021/jacs.1c07236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Molecularly derived single-site heterogeneous catalysts can bridge the understanding and performance gaps between conventional homogeneous and heterogeneous catalysis, guiding the rational design of next-generation catalysts. While impressive advances have been made with well-defined oxide supports, the structural complexity of other supports and the nature of the grafted surface species present an intriguing challenge. In this study, single-site Mo(═O)2 species grafted onto reduced graphene oxide (rGO/MoO2) are characterized by XPS, DRIFTS, powder XRD, N2 physisorption, NH3-TPD, aqueous contact angle, active site poisoning assay, Mo EXAFS, model compound single-crystal XRD, DFT, and catalytic performance. NH3-TPD reveals that the anchored MoO2 moiety is not strongly acidic, while Mo 3d5/2 XPS assigns the oxidation state as Mo(VI), and XRD shows little rGO periodicity change on MoO2 grafting. Contact angle analysis shows that MoO2 grafting consumes rGO surface polar groups, yielding a more hydrophobic surface. The rGO/MoO2 DRIFTS assigns features at 959 and 927 cm-1 to the symmetric and antisymmetric Mo═O stretching modes, respectively, of an isolated cis-(O═Mo═O) moiety, in agreement with DFT computation. Moreover, the Mo EXAFS rGO/MoO2 structural data are consistent with isolated (C-O)2-Mo(═O)2 species having two Mo═O bonds and two Mo-O bonds at distances of 1.69(3) and 1.90(3) Å, respectively. rGO/MoO2 is also more active than the previously reported AC/MoO2 catalyst, with reductive carbonyl coupling TOFs approaching 1.81 × 103 h-1. rGO/MoO2 is environmentally robust and multiply recyclable with 69 ± 2% of the Mo sites catalytically significant. Overall, rGO/MoO2 is a structurally well-defined and versatile single-site Mo(VI) dioxo heterogeneous catalytic system.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Jiaqi Li
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Anusheela Das
- Department of Material Science and Engineering and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Hacksung Kim
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Leighton O Jones
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael J Bedzyk
- Department of Material Science and Engineering and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Yosi Kratish
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Institute for Catalysis in Energy Processes (ICEP), Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Wang X, Sun C, Zhang C, Cheng S, Hu W. Organic Field-Effect Transistor-Based Biosensors with Enhanced Sensitivity and Reliability under Illumination for Carcinoembryonic Antigen Bioassay. Anal Chem 2021; 93:15167-15174. [PMID: 34723486 DOI: 10.1021/acs.analchem.1c03683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Achieving biosensors of high sensitivity and reliability is extremely significant for early diagnosis and treatment of tumor diseases. Herein, a novel organic field-effect transistor (OFET)-based biosensor was developed and applied for carcinoembryonic antigen (CEA) bioassay. This OFET-based biosensor can respond sensitively to the antigen-antibody immune-recognition reaction under illumination and darkness, respectively, thereby generating electrical signal changes of source-drain current (IDS) and threshold voltage (Vth). The OFET-based biosensor exhibits detection limits for CEA detection of 0.5 and 0.2 pM, respectively, using IDS and Vth as the response signals under darkness. When a specific intensity of light is applied, light will influence the charge-carrier transport process in the conductive channel, thus causing biosignals to turn into higher electrical signal changes of photocurrent and threshold voltage under illumination. Compared with the detection results in the dark, the biosensor exhibits higher sensitivity for CEA detection under illumination with detection limits of 13.5 and 16.9 fM. Also, multisignal outputs effectively improve the reliability of the biosensor for CEA detection. Consequently, with powerful detection functions, this OFET-based biosensor is expected to become a high-performance biosensing platform for the detection of various biological substances in the future.
Collapse
Affiliation(s)
- Xue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Chenfang Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250011, P. R. China
| | - Shanshan Cheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
6
|
Huang H, Wang J, Zhang J, Cai J, Pi J, Xu JF. Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13101599. [PMID: 34683892 PMCID: PMC8538820 DOI: 10.3390/pharmaceutics13101599] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Cobalt is essential to the metabolism of all animals due to its key role in cobalamin, also known as vitamin B12, the primary biological reservoir of cobalt as an ultra-trace element. Current cancer treatment strategies, including chemotherapy and radiotherapy, have been seriously restricted by their side effects and low efficiency for a long time, which urges us to develop new technologies for more effective and much safer anticancer therapies. Novel nanotechnologies, based on different kinds of functional nanomaterials, have been proved to act as effective and promising strategies for anticancer treatment. Based on the important biological roles of cobalt, cobalt oxide nanoparticles (NPs) have been widely developed for their attractive biomedical applications, especially their potential for anticancer treatments due to their selective inhibition of cancer cells. Thus, more and more attention has been attracted to the preparation, characterization and anticancer investigation of cobalt oxide nanoparticles in recent years, which is expected to introduce novel anticancer treatment strategies. In this review, we summarize the synthesis methods of cobalt oxide nanoparticles to discuss the advantages and restrictions for their preparation. Moreover, we emphatically discuss the anticancer functions of cobalt oxide nanoparticles as well as their underlying mechanisms to promote the development of cobalt oxide nanoparticles for anticancer treatments, which might finally benefit the current anticancer therapeutics based on functional cobalt oxide nanoparticles.
Collapse
Affiliation(s)
- Huanshao Huang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Jiajun Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Junai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China;
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
7
|
Zhong X, Zhang M, Guo L, Xie Y, Luo R, Chen W, Cheng F, Wang L. A dual-signal self-checking photoelectrochemical immunosensor based on the sole composite of MIL-101(Cr) and CdSe quantum dots for the detection of α-fetoprotein. Biosens Bioelectron 2021; 189:113389. [PMID: 34091283 DOI: 10.1016/j.bios.2021.113389] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Designing a photoelectrochemical (PEC) immunosensor that can produce dual photocurrent signals which can refer to each other is a great importance but a big challenge. In this manuscript, a novel dual photocurrent signals immunosensor was constructed for the detection of α-fetoprotein (AFP). Unlike the usual method of using two composite materials to provide cathode and anode photocurrent respectively, this work applies only one compound of MIL-101 (Cr) and CdSe quantum dots (QDs). Thereinto, we found that the photocurrent polarity of MIL-101(Cr) would switch by adjusting applied voltage. And then CdSe QDs was introduced by simple ultrasound mixing to boost the dual photocurrent signals. Furthermore, in the composite of M&C, the electron transfer path between MIL-101(Cr) and CdSe QDs may switch between "Z-type" and "Ⅱ-type" by adjusting voltage. Benefiting by the dual signals, the proposed sensor can not only perform sensitively quantitative detection of α-fetoprotein (AFP), but also can intuitively estimate the accuracy and reliability of the test result by determining whether the corresponding relationship of "cathode photocurrent-analyte concentration-anode photocurrent" is established. The linear ranges of the sensing electrodes as cathode and anode are the same, both from 0.1 to 300 ng mL-1. The limit of detection (LOD) is 0.082 ng mL-1 (S/N = 3) when it used as an anode, and the LOD is 0.054 ng mL-1 (S/N = 3) when it served as cathode. Furthermore, this sensor showed acceptable stability, reproducibility, specificity, and feasibility of detecting AFP in human serum, which has broad development prospects in the early clinical diagnosis.
Collapse
Affiliation(s)
- Xiaolin Zhong
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| | - Lu'an Guo
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yongze Xie
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Renfeng Luo
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Wenxue Chen
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| |
Collapse
|
8
|
Liu X, Ying Y, Ping J. Structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosens Bioelectron 2020; 167:112495. [PMID: 32818751 DOI: 10.1016/j.bios.2020.112495] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Single-walled carbon nanohorns (SWCNHs), a type of tapered carbon nanomaterials, are generally prepared by laser ablation method, arc method, and Joule heating method without the addition of metal catalysts, which makes them pure and environmentally friendly. The obtained aggregates of SWCNHs mainly have three different types of structure, dahlia-like, bud-like, and seed-like. Over the past few decades, they have been widely used in the fields of energy, medicine, chemistry, and sensing. The SWCNHs-based sensors have shown high sensitivity, rapid response, and excellent stability, which are mainly attributed to the excellent electrical conductivity, large electrochemical window, large specific surface area, and mechanical strength of SWCNHs. In this review, we systematically summarizes the structures, synthesis methods, and sensing applications of SWCNHs, including electrochemical sensors, photoelectrochemical sensors, electrochemiluminescence sensors, fluorescent sensors, and resistive sensors. Moreover, the development prospects of SWCNHs in this field are also discussed.
Collapse
Affiliation(s)
- Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
9
|
Fang D, Huang Y, Zhang S, Dai H, Hong Z, Lin Y. Versatile NiCo2O4 nanosheets hybrids-based label-free immunosensor for thyroglobulin using photothermal amplification. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Wang K, Xing X, Ding Y, Guo W, Hong X, Zhao H. Resonance Raman scattering-infrared absorption dual-mode immunosensing for carcinoembryonic antigen based on ZnO@SiO 2 nanocomposites. Biosens Bioelectron 2020; 150:111870. [PMID: 31748192 DOI: 10.1016/j.bios.2019.111870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/19/2023]
Abstract
Detection of cancer biomarkers is crucial for the diagnosis and monitoring of malignant tumors. However, the accuracy and sensitivity still require sufficient improvement for practically clinical application. In this work, a reliable and sensitive dual-mode immunosensing method is described for carcinoembryonic antigen (CEA) detection using a biofunctional ZnO@SiO2 nanocomposite as a resonance Raman scattering (RRS)-infrared (IR) absorption nanoprobe. The multiphonon RRS signal originating from the ZnO and the characteristic IR fingerprint signal of the transverse optical and longitudinal optical phonon modes of the asymmetric stretching of Si-O-Si bonds showed no interference with each other. A CEA antibodies-immobilized substrate was fabricated to capture the analyte/nanoprobe complexes. The RRS intensity at 569 cm‒1 and the IR absorption at 1061 cm‒1 were used for quantitative analysis. Accurate CEA detection was performed as a result of the strong resistance of the dual-mode nanoprobe to surrounding interference. The limit of detection was 98.0 fg mL‒1. The detection range was 500 ng mL‒1 - 50 fg mL‒1, which is wider than those of single-mode RRS or IR absorption immunosensings. High reproducibility, selectivity and specificity were achieved. The assay performance of human serum samples demonstrated the practicability of the method in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin, 130024, China
| | - Xiaoting Xing
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin, 130024, China
| | - Yadan Ding
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin, 130024, China
| | - Wanqiu Guo
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin, 130024, China
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin, 130024, China.
| | - Huiying Zhao
- Department of Basic Medicine, Gerontology Department of First Bethune Hospital, University of Jilin, Changchun, Jilin, 130021, China.
| |
Collapse
|
11
|
Wang J, Zhang S, Dai H, Zheng H, Hong Z, Lin Y. Dual-readout immunosensor constructed based on brilliant photoelectrochemical and photothermal effect of polymer dots for sensitive detection of sialic acid. Biosens Bioelectron 2019; 142:111567. [DOI: 10.1016/j.bios.2019.111567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 01/29/2023]
|
12
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly(5-formylindole) nanocomposite. Biosens Bioelectron 2018; 116:60-66. [DOI: 10.1016/j.bios.2018.05.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
|
14
|
Combined electrochemiluminescent and electrochemical immunoassay for interleukin 6 based on the use of TiO 2 mesocrystal nanoarchitectures. Mikrochim Acta 2018; 185:277. [PMID: 29721681 DOI: 10.1007/s00604-018-2802-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
A dual-responsive sandwich-type immunosensor is described for the detection of interleukin 6 (IL-6) by combining electrochemiluminescent (ECL) and electrochemical (EC) detection based on the use of two kinds of TiO2 mesocrystal nanoarchitectures. A composite was prepared from TiO2 (anatase) mesocages (AMCs) and a carboxy-terminated ionic liquid (CTIL) and then placed on a glassy carbon electrode (GCE). In the next step, the ECL probe Ru(bpy)3(II) and antibody against IL-6 (Ab1) were immobilized on the GCE. Octahedral anatase TiO2 mesocrystals (OAMs) served as the matrix for immobilizing acid phosphatase (ACP) and secondary antibody (Ab2) labeled with horseradish peroxidase (HRP) to form a bioconjugate of type Ab2-HRP/ACP/OAMs. It was self-assembled on the GCE by immunobinding. 1-Naphthol, which is produced in-situ on the surface of the GCE due to the hydrolysis of added 1-naphthyl phosphate by ACP, is oxidized by HRP in the presence of added H2O2. This results in an electrochemical signal (typically measured at 0.4 V vs. Ag/AgCl) that increases linearly in the 10 fg·mL-1 to 90 ng·mL-1 IL-6 concentration range with a detection limit of 0.32 fg·mL-1. Secondly, the oxidation product of 1-naphthol quenches the ECL emission of Ru(bpy)32+. This leads to a decrease in ECL intensity which is linear in the 10 ag·mL-1 to 90 ng·mL-1 concentration range, with a detection limit of 3.5 ag·mL-1. The method exhibits satisfying selectivity and good reproducibility which demonstrates its potential in clinical testing and diagnosis. Graphical abstract A dual-responsive sandwich-type immunosensor was fabricated for the detection of interleukin 6 by combining electrochemiluminescence and electrochemical detection based on the use of two kinds of TiO2 mesocrystal nanoarchitectures.
Collapse
|
15
|
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
16
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
17
|
Sánchez-Tirado E, González-Cortés A, Yudasaka M, Iijima S, Langa F, Yáñez-Sedeño P, Pingarrón J. Electrochemical immunosensor for the determination of 8-isoprostane aging biomarker using carbon nanohorns-modified disposable electrodes. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
19
|
Zheng H, Zhang Q, Hong Z, Lin Y, Dai H. A bifunctional catalyst based ECL immunosensor for a cardiac biomarker regulated by oxygen evolution reaction. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Huo X, Liu X, Liu J, Sukumaran P, Alwarappan S, Wong DKY. Strategic Applications of Nanomaterials as Sensing Platforms and Signal Amplification Markers at Electrochemical Immunosensors. ELECTROANAL 2016. [DOI: 10.1002/elan.201600166] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaohe Huo
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering; Henan University; Kaifeng, Henan Province 475004 P. R. China
| | - Xiaoqiang Liu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering; Henan University; Kaifeng, Henan Province 475004 P. R. China
| | - Jin Liu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering; Henan University; Kaifeng, Henan Province 475004 P. R. China
| | - Preethi Sukumaran
- Bio-electrochemistry Group; CSIR-Central Electrochemical Research Institute; Karaikudi 630006, Tamilnadu India
| | - Subbiah Alwarappan
- Bio-electrochemistry Group; CSIR-Central Electrochemical Research Institute; Karaikudi 630006, Tamilnadu India
| | - Danny K. Y. Wong
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney NSW 2109 Australia
| |
Collapse
|
21
|
Yáñez-Sedeño P, González-Cortés A, Agüí L, Pingarrón JM. Uncommon Carbon Nanostructures for the Preparation of Electrochemical Immunosensors. ELECTROANAL 2016. [DOI: 10.1002/elan.201600154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| | - Araceli González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| | - Lourdes Agüí
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| | - José M. Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| |
Collapse
|