1
|
Kim J, Kong HG, Ahn Y. Textile-Based Membraneless Microfluidic Double-Inlet Hybrid Microbial-Enzymatic Biofuel Cell. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43661-43669. [PMID: 39106182 DOI: 10.1021/acsami.4c10139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
This study reports the development of a textile-based colaminar flow hybrid microbial-enzymatic biofuel cell. Shewanella MR-1 was used as a biocatalyst on the anode, and bienzymatic system catalysts based on glucose oxidase and horseradish peroxidase were applied on an air-breathing cathode to address the overpotential loss in a body-friendly way. A single-layer Y-shaped channel configuration with a double-inlet was adopted. Microchannels of biofuel cells were patterned by silk screen printing with Ecoflex to maintain the flexibility of textile substrates without harm to the human body. The electrodes were fabricated with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and a mixture of multiwalled carbon nanotubes and single-walled carbon nanotubes by screen printing. The effects of electrode materials, catalyst type, catalyst concentration, and glucose concentration in the catholyte were investigated to optimize the fuel cell performance. The peak power density (44.9 μW cm-2) and maximum current density (388.9 μA cm-2) of the optimized hybrid biofuel cell were better than those of previously reported textile- or paper-substrate microscale single microbial fuel cells. The developed biofuel cell will be a useful platform as a microscale power source that is harmless to the environment and living organisms.
Collapse
Affiliation(s)
- Jinyong Kim
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hui Geon Kong
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yoomin Ahn
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
2
|
Liu W, Lewis SE, di Lorenzo M, Squires AM. Development of Redox-Active Lyotropic Lipid Cubic Phases for Biosensing Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:170-178. [PMID: 38113389 PMCID: PMC10786026 DOI: 10.1021/acs.langmuir.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Enzyme-based electrochemical biosensors play an important role in point-of-care diagnostics for personalized medicine. For such devices, lipid cubic phases (LCP) represent an attractive method to immobilize enzymes onto conductive surfaces with no need for chemical linking. However, research has been held back by the lack of effective strategies to stably co-immobilize enzymes with a redox shuttle that enhances the electrical connection between the enzyme redox center and the electrode. In this study, we show that a monoolein (MO) LCP system doped with an amphiphilic redox mediator (ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) can be used for enzyme immobilization to generate an effective biosensing platform. Small-angle X-ray scattering (SAXS) showed that MO LCP can incorporate Fc12 while maintaining the Pn3m symmetry morphology. Cyclic voltammograms of Fc12/MO showed quasi-reversible behavior, which implied that Fc12 was able to freely diffuse in the lipid membrane of LCP with a diffusion coefficient of 1.9 ± 0.2 × 10-8 cm2 s-1 at room temperature. Glucose oxidase (GOx) was then chosen as a model enzyme and incorporated into 0.2%Fc12/MO to evaluate the activity of the platform. GOx hosted in 0.2%Fc12/MO followed Michaelis-Menten kinetics toward glucose with a KM and Imax of 8.9 ± 0.5 mM and 1.4 ± 0.2 μA, respectively, and a linearity range of 2-17 mM glucose. Our results therefore demonstrate that GOx immobilized onto 0.2% Fc12/MO is a suitable platform for the electrochemical detection of glucose.
Collapse
Affiliation(s)
- Wanli Liu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Mirella di Lorenzo
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Adam M. Squires
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
3
|
García-Molina G, Natale P, Coito AM, Cava DG, A. C. Pereira I, López-Montero I, Vélez M, Pita M, De Lacey AL. Electro-enzymatic ATP regeneration coupled to biocatalytic phosphorylation reactions. Bioelectrochemistry 2023; 152:108432. [PMID: 37030092 DOI: 10.1016/j.bioelechem.2023.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Adenosine-5-triphosphate (ATP) is the main energy vector in biological systems, thus its regeneration is an important issue for the application of many enzymes of interest in biocatalysis and synthetic biology. We have developed an electroenzymatic ATP regeneration system consisting in a gold electrode modified with a floating phospholipid bilayer that allows coupling the catalytic activity of two membrane-bound enzymes: NiFeSe hydrogenase from Desulfovibrio vulgaris and F1Fo-ATP synthase from Escherichia coli. Thus, H2 is used as a fuel for producing ATP. This electro-enzymatic assembly is studied as ATP regeneration system of phosphorylation reactions catalysed by kinases, such as hexokinase and NAD+-kinase for respectively producing glucose-6-phosphate and NADP+.
Collapse
|
4
|
Powering future body sensor network systems: A review of power sources. Biosens Bioelectron 2020; 166:112410. [DOI: 10.1016/j.bios.2020.112410] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
5
|
Rewatkar P, Hitaishi VP, Lojou E, Goel S. Enzymatic fuel cells in a microfluidic environment: Status and opportunities. A mini review. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106533] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Abstract
This work presents the characterization of a self-powered glucose biosensor using individual sequential assays of human plasma glucose obtained from diabetic patients. The self-powered glucose biosensor is exploited to optimize the assay parameters for sensing plasma glucose levels. In particular, the biofuel cell component of the system at pH 7.4, 37 °C generates a power density directly proportional to plasma glucose and exhibited a maximum power density of 0.462 mW·cm−2 at a cell voltage of 0.213 V in 5 mM plasma glucose. Plasma glucose is further sensed by monitoring the charge/discharge frequency (Hz) of the integrated capacitor functioning as the transducer. With this method, the plasma glucose is quantitatively detected in 100 microliters of human plasma with unprecedented sensitivity, as high as 104.51 ± 0.7 Hz·mM−1·cm−2 and a detection limit of 2.31 ± 0.3 mM. The results suggest the possibility to sense human plasma glucose at clinically relevant concentrations without the use of an external power source.
Collapse
|
7
|
Krishnan S, Frazis M, Premaratne G, Niroula J, Echeverria E, McIlroy DN. Pyrenyl-carbon nanostructures for scalable enzyme electrocatalysis and biological fuel cells. Analyst 2018; 143:2876-2882. [PMID: 29790506 DOI: 10.1039/c8an00703a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective of this article is to demonstrate the electrode geometric area-based scalability of pyrenyl-carbon nanostructure modification for enzyme electrocatalysis and fuel cell power output using hydrogenase anode and bilirubin oxidase cathode as the model system.
Collapse
Affiliation(s)
- Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Yang Y, Liu T, Tao K, Chang H. Generating Electricity on Chips: Microfluidic Biofuel Cells in Perspective. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Tianyu Liu
- Department
of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States of America
| | | | | |
Collapse
|
9
|
Gonzalez-Solino C, Lorenzo MD. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics. BIOSENSORS 2018; 8:E11. [PMID: 29382147 PMCID: PMC5872059 DOI: 10.3390/bios8010011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.
Collapse
Affiliation(s)
| | - Mirella Di Lorenzo
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
10
|
Guo H, Yin H, Yan X, Shi S, Yu Q, Cao Z, Li J. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell. Sci Rep 2016; 6:39162. [PMID: 27966629 PMCID: PMC5155307 DOI: 10.1038/srep39162] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022] Open
Abstract
Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm-2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm-2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg-1, about 4.5 times higher than that of commercial Pt/C.
Collapse
Affiliation(s)
- Hong Guo
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huiming Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiuling Yan
- School of Chemistry and Environmental Science, Yili Normal University, Xinjiang 835000, China
| | - Shuai Shi
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingyang Yu
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhen Cao
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jian Li
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
11
|
Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens Bioelectron 2016; 87:607-614. [PMID: 27616286 DOI: 10.1016/j.bios.2016.08.104] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022]
Abstract
Serious brain disorders, such as the Alzheimer's Disease (AD), are associated with a marked drop in the levels of important neurotransmitters, such as acetylcholine (ACh). Real time monitoring of such biomarkers can therefore play a critical role in enhancing AD therapies by allowing timely diagnosis, verifications of treatment effectiveness, and developments of new medicines. In this study, we present the first acetylcholine/oxygen hybrid enzymatic fuel cell for the self-powered on site detection of ACh in plasma, which is based on the combination of an enzymatic anode with a Pt cathode. Firstly, an effective acetylcholinesterase immobilized electrode was developed and its electrochemical performance evaluated. Highly porous gold was used as the electrode material, and the enzyme was immobilized via a one step rapid and simple procedure that does not require the use of harsh chemicals or any electrode/enzyme pre-treatments. The resulting enzymatic electrode was subsequently used as the anode of a miniature flow-through membrane-less fuel cell and showed excellent response to varying concentrations of ACh. The peak power generated by the fuel cell was 4nW at a voltage of 260mV and with a current density of 9μAcm-2. The limit of detection of the fuel cell sensor was 10μM, with an average response time as short as 3min. These exciting results open new horizons for point-of-care Alzheimer diagnosis and provide an attractive potential alternative to established methods that require laborious and time-consuming sample treatments and expensive instruments.
Collapse
|