1
|
Chung YD, Tsai YC, Wang CH, Lee GB. Aptamer selection via versatile microfluidic platforms and their diverse applications. LAB ON A CHIP 2025; 25:1047-1080. [PMID: 39774569 DOI: 10.1039/d4lc00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, in vivo-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and in vivo-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.
Collapse
Affiliation(s)
- Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chi-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
3
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
6
|
Yang G, Li W, Zhang S, Hu B, Huang Z. Highly-efficient selection of aptamers for detecting various HPV subtypes in clinical samples. Talanta 2024; 266:125039. [PMID: 37604070 DOI: 10.1016/j.talanta.2023.125039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Nucleic acid aptamers are of great potentials in diagnostic and therapeutic applications because of their unique molecular recognition capabilities. However, satisfactory aptamers with high affinity and specificity are still in short supply. Herein, we have developed new selection methods allowing the free interactions between the targets and potential aptamers in solution. In our selection system, the protein targets (biotinylated randomly or site-specifically) were first incubated with the random DNA library, followed by the pull-down with the streptavidin magnetic beads or biolayer-interferometry (BLI) sensors. By comparing the two biotinylation strategies (random or site-specific) and two states of the targets (free or immobilized), we have found that the combination of the site-specific biotinylation and free-target strategies was most successful. Based on these highly-efficient selection strategies, HPV L1 aptamers were obtained. By designing the sandwich aptasensor assisted with RCA and CRISPR/Cas12a, we have diagnosed various HPV subtypes in clinical samples, such as easily-collected urine samples. In summary, our new strategy can allow efficient selection of aptamers with high affinity and specificity for clinical applications.
Collapse
Affiliation(s)
- Guotai Yang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Wei Li
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Shun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Bei Hu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610000, PR China; SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, 610095, PR China.
| |
Collapse
|
7
|
Dobrovodský D, Di Primo C. Do conformational changes contribute to the surface plasmon resonance signal? Biosens Bioelectron 2023; 232:115296. [PMID: 37079993 DOI: 10.1016/j.bios.2023.115296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Surface plasmon resonance (SPR)-based biosensors are widely used instruments for characterizing molecular interactions. In theory the SPR signal depends only on mass changes for interacting molecules of same chemical nature. Whether conformational changes of interacting molecules also contribute to the SPR signal is still a subject of lively debates. Works have been published claiming that conformational changes were detected but all factors contributing to the SPR signal were not carefully considered, in addition to often using no or improper controls. In the present work we used a very well-characterized oligonucleotide, the thrombin-binding DNA aptamer (TBA), which upon binding of potassium ions folds into a two G-tetrad antiparallel G-quadruplex structure. All terms contributing to the maximal expected SPR response, Rmax, in particular the refractive index increment, RII, of both partners and the fraction of immobilized TBA target available, ca, were experimentally assessed. The resulting Rmax was then compared to the maximal experimental SPR response for potassium ions binding to TBA using appropriate controls. Regardless how the RIIs were measured, by SPR or refractometry, and how much TBA available for interacting with potassium ions was considered, the theoretical and the experimental SPR responses never matched, the former being always lower than the latter. Using a straightforward experimental model system and by thoroughly taking into account all contributing factors we therefore conclude that conformational changes can indeed contribute to the measured SPR signal.
Collapse
|
8
|
Ozturk M, Nilsen-Hamilton M, Ilgu M. Aptamer Applications in Neuroscience. Pharmaceuticals (Basel) 2021; 14:1260. [PMID: 34959661 PMCID: PMC8709198 DOI: 10.3390/ph14121260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, prion disease, or brain tumors. The diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theragnostic applications to meet these needs. This review covers pioneering studies in applying aptamers, which shows promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.
Collapse
Affiliation(s)
- Meric Ozturk
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Marit Nilsen-Hamilton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| | - Muslum Ilgu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (M.O.); (M.N.-H.)
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Ames Laboratory, US DOE (United States Department of Energy), Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
9
|
Daems E, Moro G, Campos R, De Wael K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
11
|
Xue J, Chen F, Bai M, Cao X, Fu W, Zhang J, Zhao Y. Aptamer-Functionalized Microdevices for Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9402-9411. [PMID: 33170621 DOI: 10.1021/acsami.0c16138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aptamers have drawn great attention in the field of biological research and disease diagnosis for the remarkable advantages as recognition elements. They show unique superiority for facile selection, desirable thermal stability, flexible engineering, and low immunogenicity, complementing the use of conventional antibodies. Aptamer-functionalized microdevices offer promising properties for bioanalysis applications because of the compact sizes, minimal reaction volume, high throughput, operational feasibility, and controlled preciseness. In this review, we first introduce the innovative technologies in the selection of aptamers with microdevices and then highlight some advanced applications of aptamer-functionalized microdevices in bioanalysis field for diverse targets. Aptamer-functionalized microfluidic devices, microarrays, and paper-based and other interface-based microdevices are all bioanalysis platforms with huge potential in the near future. Finally, the major challenges of these microdevices applied in bioanalysis are discussed and future perspectives are also envisioned.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Wenhao Fu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
12
|
JIANG H, LV XF, ZHAO KX. Progress of Aptamer Screening Techniques Based on Microfluidic Chips. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60015-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Abstract
Surface plasmon resonance (SPR)-based instruments have become gold-standard tools for investigating molecular interactions involving macromolecules. The major advantage is that the measured signal is sensitive to changes in mass. Therefore, all kinds of complexes can be analyzed including those with compounds as small as cations. SPR is mainly used to determine the dissociation equilibrium constant and the binding rates of a reaction if slow enough. SPR is well suited for analysis molecular interactions with nucleic acids because these negatively charged macromolecules do not have a tendency to stick to the sensor chip surface as some proteins can do. To illustrate the use of SPR with RNA molecules, we describe methods that we used for monitoring the interaction between the protein Rop from E. coli and two RNA-RNA loop-loop complexes. One is derived from the natural target of Rop, RNAI-RNAII. The other one is an RNA-RNA complex formed between a shortened version of the TAR element of HIV-1 and a structured RNA, TAR* rationally designed to interact with TAR through loop-loop interactions. These methods can be easily adapted to other complexes involving RNA molecules and to other SPR instruments.
Collapse
Affiliation(s)
- Carmelo Di Primo
- Laboratoire ARNA, University of Bordeaux, Bordeaux, France.
- INSERM U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, Pessac, France.
| |
Collapse
|
14
|
Kurt H, Eyüpoğlu AE, Sütlü T, Budak H, Yüce M. Plasmonic Selection of ssDNA Aptamers against Fibroblast Growth Factor Receptor. ACS COMBINATORIAL SCIENCE 2019; 21:578-587. [PMID: 31265241 DOI: 10.1021/acscombsci.9b00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe the selection of ssDNA aptamers targeting fibroblast growth factor receptor binding protein 3 K650E, which has roles in cell division, growth, and differentiation through the kinase cascade. The selection process was based on the label-free, real-time monitoring of binding interactions by surface plasmon resonance, allowing for convenient manipulation of the selection rounds. Next generation sequencing data provided four major motif families from which nine individual sequences were selected based on their abundance levels. Electrophoretic mobility shift assays revealed binding of the selected aptamers to the target protein without significant interference from fibroblast growth factor receptor binding protein 2, indicating the selectivity of the aptamers. The dissociation constant at equilibrium for the best aptamer candidate, SU-3, was found to be (28.2 ± 19.6) × 10-9 M (n = 5) using a single-cycle kinetic analysis method. Advantages of the experimental setup and potential applications of the selected aptamers are discussed.
Collapse
Affiliation(s)
- Hasan Kurt
- Istanbul Medipol University, School of Engineering and Natural Sciences, Beykoz, 34810 Istanbul, Turkey
- Nanosolar Plasmonics Ltd., Gebze, 41400 Kocaeli, Turkey
| | - Alp Ertunga Eyüpoğlu
- Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla, 34956 Istanbul, Turkey
| | - Tolga Sütlü
- Sabanci University, SUNUM Nanotechnology Research Centre, Tuzla, 34956 Istanbul Turkey
| | - Hikmet Budak
- Montana State University, Cereal Genomics Lab, Bozeman, Montana 59717-2000, United States
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research Centre, Tuzla, 34956 Istanbul Turkey
| |
Collapse
|
15
|
Mairal Lerga T, Jauset-Rubio M, Skouridou V, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O'Sullivan CK. High Affinity Aptamer for the Detection of the Biogenic Amine Histamine. Anal Chem 2019; 91:7104-7111. [PMID: 31042376 DOI: 10.1021/acs.analchem.9b00075] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The importance of histamine in various physiological functions and its involvement in allergenic responses make this small molecule one of the most studied biogenic amines. Even though a variety of chromatography-based methods have been described for its analytical determination, the disadvantages they present in terms of cost, analysis time, and low portability limit their suitability for in situ routine testing. In this work, we sought to identify histamine-binding aptamers that could then be exploited for the development of rapid, facile, and sensitive assays for histamine detection suitable for point-of-need analysis. A classic SELEX process was designed employing magnetic beads for target immobilization and the selection was completed after ten rounds. Following Next Generation Sequencing of the last selection rounds from both positive and counter selection magnetic beads, several sequences were identified and initially screened using an apta-PCR affinity assay (APAA). Structural and functional characterization of the candidates resulted in the identification of the H2 aptamer. The high binding affinity of the H2 aptamer to histamine was validated using four independent assays ( KD of 3-34 nM). Finally, the H2 aptamer was used for the development of a magnetic beads-based competitive assay for the detection of histamine in both buffer and synthetic urine, achieving very low limits of detection of 18 pM and 76 pM, respectively, while no matrix effects were observed. These results highlight the suitability of the strategy followed for identifying small molecule-binding aptamers and the compatibility of the selected H2 aptamer with the analysis of biological samples, thus facilitating the development of point-of-care devices for routine testing. Ongoing work is focused on extending the application of the H2 aptamer to the detection of spoilage in meat, fish, and beverages, as well as evaluating the affinity of truncated forms of the aptamer.
Collapse
Affiliation(s)
- Teresa Mairal Lerga
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain
| | - Miriam Jauset-Rubio
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain
| | - Vasso Skouridou
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science , King Abdulaziz University , P.O. Box 80203, 21589 Jeddah , Saudi Arabia
| | - Mohammad S El-Shahawi
- Department of Chemistry, Faculty of Science , King Abdulaziz University , P.O. Box 80203, 21589 Jeddah , Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science , King Abdulaziz University , P.O. Box 80203, 21589 Jeddah , Saudi Arabia
| | - Ciara K O'Sullivan
- Nanobiotechnology & Bioanalysis Group, INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Quimica , Universitat Rovira I Virgili , Avinguda Paı̈sos Catalans 26 , 43007 Tarragona , Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) , Passeig Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
16
|
Bayat P, Nosrati R, Alibolandi M, Rafatpanah H, Abnous K, Khedri M, Ramezani M. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 2018; 154:132-155. [PMID: 30193856 DOI: 10.1016/j.biochi.2018.09.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method used to isolate high-affinity single stranded oligonucleotides from a large random sequence pool. These SELEX-derived oligonucleotides named aptamer, can be selected against a broad spectrum of target molecules including proteins, cells, microorganisms and chemical compounds. Like antibodies, aptamers have a great potential in interacting with and binding to their targets through structural recognition and are therefore called "chemical antibodies". However, aptamers offer advantages over antibodies including smaller size, better tissue penetration, higher thermal stability, lower immunogenicity, easier production, lower cost of synthesis and facilitated conjugation or modification with different functional moieties. Thus, aptamers represent an attractive substitution for protein antibodies in the fields of biomarker discovery, diagnosis, imaging and targeted therapy. Enormous interest in aptamer technology triggered the development of SELEX that has underwent numerous modifications since its introduction in 1990. This review will discuss the recent advances in SELEX methods and their advantages and limitations. Aptamer applications are also briefly outlined in this review.
Collapse
Affiliation(s)
- Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Khedri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Li Z, Munro K, Narouz MR, Lau A, Hao H, Crudden CM, Horton JH. Self-Assembled N-Heterocyclic Carbene-Based Carboxymethylated Dextran Monolayers on Gold as a Tunable Platform for Designing Affinity-Capture Biosensor Surfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17560-17570. [PMID: 29741868 DOI: 10.1021/acsami.8b02595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sensor surfaces play a predominant role in the development of optical biosensor technologies for the analysis of biomolecular interactions. Thiol-based self-assembled monolayers (SAMs) on gold have been widely used as linker layers for sensor surfaces. However, the degradation of the thiol-gold bond can limit the performance and durability of such surfaces, directly impacting their performance and cost-effectiveness. To this end, a new family of materials based on N-heterocyclic carbenes (NHCs) has emerged as an alternative for surface modification, capable of self-assembling onto a gold surface with higher affinity and superior stability as compared to the thiol-based systems. Here we demonstrate three applications of NHC SAMs supporting a dextran layer as a tunable platform for developing various affinity-capture biosensor surfaces. We describe the development and testing of NHC-based dextran biosensor surfaces modified with each of streptavidin, nitrilotriacetic acid, and recombinant Protein A. These affinity-capture sensor surfaces enable oriented binding of ligands for optimal performance in biomolecular assays. Together, the intrinsic high stability and flexible design of the NHC biosensing platforms show great promise and open up exciting possibilities for future biosensing applications.
Collapse
Affiliation(s)
| | | | | | | | - Hongxia Hao
- Collaborative Innovation Center of Judicial Civilization and Key Laboratory of Evidence Science , China University of Political Science and Law , Beijing 100088 , China
| | - Cathleen M Crudden
- Institute for Transformative Bio-Molecules (ITbM-WPI) , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| | | |
Collapse
|
18
|
Mazaafrianto DN, Maeki M, Ishida A, Tani H, Tokeshi M. Recent Microdevice-Based Aptamer Sensors. MICROMACHINES 2018; 9:E202. [PMID: 30424135 PMCID: PMC6187364 DOI: 10.3390/mi9050202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
Abstract
Since the systematic evolution of ligands by exponential enrichment (SELEX) method was developed, aptamers have made significant contributions as bio-recognition sensors. Microdevice systems allow for low reagent consumption, high-throughput of samples, and disposability. Due to these advantages, there has been an increasing demand to develop microfluidic-based aptasensors for analytical technique applications. This review introduces the principal concepts of aptasensors and then presents some advanced applications of microdevice-based aptasensors on several platforms. Highly sensitive detection techniques, such as electrochemical and optical detection, have been integrated into lab-on-a-chip devices and researchers have moved towards the goal of establishing point-of-care diagnoses for target analyses.
Collapse
Affiliation(s)
- Donny Nugraha Mazaafrianto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
19
|
Silver decahedral nanoparticles empowered SPR imaging-SELEX for high throughput screening of aptamers with real-time assessment. Biosens Bioelectron 2018; 109:206-213. [PMID: 29567565 DOI: 10.1016/j.bios.2018.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 01/16/2023]
Abstract
A highly efficient method for aptamer screening with real-time monitoring of the SELEX process was described by silver decahedra nanoparticles (Ag10-NPs) enhanced surface plasmon resonance imaging (SPRI). A microarray chip was developed by immobilization of target protein (Lactoferrin (Lac)) and control proteins (α-lactalbumin (α), β-lactoglobulin (β), casein, and bovine serum albumin (BSA)) on the biochip surface. Ag10-NPs were conjugated with an ssDNA library (lib) (Ag10-NPs-library) that consisted of a central 40 nt randomized sequence and a 20 nt fixed primer sequence. Introduction of the Ag10-NPs-library to the SPRI flow channels drastically increased the sensitivity of SPRI signal for real-time monitoring of SELEX. The work allows rapid screening of potential targets, and yields nine aptamers with high affinity (nanomolar range) for Lac after only six-rounds of selection. The aptamer Lac 13-26 was then further tested by SPRI, and the results demonstrated that the aptamer had the capacity to be ultra-sensitive for specific detection of Lac. The novel SPRI-SELEX method demonstrated here showed many advantages of real-time evaluation, high throughput, and high efficiency.
Collapse
|
20
|
Abi-Ghanem J, Rabin C, Porrini M, Dausse E, Toulmé JJ, Gabelica V. Electrostatics Explains the Position-Dependent Effect of G⋅U Wobble Base Pairs on the Affinity of RNA Kissing Complexes. Chemphyschem 2017; 18:2782-2790. [PMID: 28762245 DOI: 10.1002/cphc.201700337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Indexed: 01/03/2023]
Abstract
In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications.
Collapse
Affiliation(s)
- Josephine Abi-Ghanem
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Clémence Rabin
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Massimiliano Porrini
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Eric Dausse
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Jean-Jacques Toulmé
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Valérie Gabelica
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| |
Collapse
|
21
|
Nguyen Quang N, Perret G, Ducongé F. Applications of High-Throughput Sequencing for In Vitro Selection and Characterization of Aptamers. Pharmaceuticals (Basel) 2016; 9:ph9040076. [PMID: 27973417 PMCID: PMC5198051 DOI: 10.3390/ph9040076] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
Aptamers are identified through an iterative process of evolutionary selection starting from a random pool containing billions of sequences. Simultaneously to the amplification of high-affinity candidates, the diversity in the pool is exponentially reduced after several rounds of in vitro selection. Until now, cloning and Sanger sequencing of about 100 sequences was usually used to identify the enriched candidates. However, High-Throughput Sequencing (HTS) is now extensively used to replace such low throughput sequencing approaches. Providing a deeper analysis of the library, HTS is expected to accelerate the identification of aptamers as well as to identify aptamers with higher affinity. It is also expected that it can provide important information on the binding site of the aptamers. Nevertheless, HTS requires handling a large amount of data that is only possible through the development of new in silico methods. Here, this review presents these different strategies that have been recently developed to improve the identification and characterization of aptamers using HTS.
Collapse
Affiliation(s)
- Nam Nguyen Quang
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), 18 route du panorama, 92260 Fontenay-aux-Roses, France.
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Université Paris-Sud, UMR 9199, 92260 Fontenay-aux-Roses, France.
| | - Gérald Perret
- LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf CEDEX, France.
| | - Frédéric Ducongé
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), 18 route du panorama, 92260 Fontenay-aux-Roses, France.
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Université Paris-Sud, UMR 9199, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
22
|
A label-free ultrasensitive assay of 8-hydroxy-2′-deoxyguanosine in human serum and urine samples via polyaniline deposition and tetrahedral DNA nanostructure. Anal Chim Acta 2016; 946:48-55. [DOI: 10.1016/j.aca.2016.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/27/2022]
|
23
|
Selection of RNA Aptamers Against Botulinum Neurotoxin Type A Light Chain Through a Non-Radioactive Approach. Appl Biochem Biotechnol 2016; 180:10-25. [PMID: 27085355 DOI: 10.1007/s12010-016-2081-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance.
Collapse
|