1
|
Hu J, Wang T, Xu J, Hai J, Ji Y, Li R. Dual-emission red carbon dots for ATP real-time monitoring and quantification to reveal drug and cancer effects on lysosomes. Talanta 2024; 280:126671. [PMID: 39128312 DOI: 10.1016/j.talanta.2024.126671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Monitoring and quantifying ATP levels in vivo is essential to understanding its role as a signaling molecule in tumor progression and therapy. Nevertheless, the real-time monitoring and quantitative assessment of lysosomal ATP remains challenging due to the lack of accurate tools in deep tissues. In this study, based on the crosslinking enhanced emission (CEE) effect, we successfully synthesized red carbon dots (R-CDs) with dual emission properties for efficient quantification of intracellular ATP. The R-CDs emit in the near-infrared range and target lysosomes with rapid detection capabilities, rendering them exceptionally well-suited for directly observing and analyzing the dynamics of lysosomal ATP through live cell imaging techniques. Importantly, R-CDs have proven their efficacy in real-time monitoring of drug stimulus-induced fluctuations in endogenous lysosomal ATP concentration and have also been employed for quantifying and distinguishing lysosomal ATP levels among normal and cancer cell lines. These noteworthy findings emphasize the versatility of the R-CD as a valuable imaging tool for elucidating the functional role of lysosomal ATP in drug screening and cancer diagnostics and hold the promise of becoming a reference tool for deepening our understanding of drug mechanisms of action.
Collapse
Affiliation(s)
- Jing Hu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianmiao Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingyuan Xu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Hai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
2
|
Zhang K, Xi J, Wang Y, Xue J, Li B, Huang Z, Zheng Z, Liang N, Wei Z. A Microfluidic Chip-Based Automated System for Whole-Course Monitoring the Drug Responses of Organoids. Anal Chem 2024; 96:10092-10101. [PMID: 38833634 DOI: 10.1021/acs.analchem.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Tumor patients-derived organoids, as a promising preclinical prediction model, have been utilized to evaluate ex vivo drug responses for formulating optimal therapeutic strategies. Detecting adenosine triphosphate (ATP) has been widely used in existing organoid-based drug response tests. However, all commercial ATP detection kits containing the cell lysis procedure can only be applied for single time point ATP detection, resulting in the neglect of dynamic ATP variations in living cells. Meanwhile, due to the limited number of viable organoids from a single patient, it is impractical to exhaustively test all potential time points in search of optimal ones. In this work, a multifunctional microfluidic chip was developed to perform all procedures of organoid-based drug response tests, including establishment, culturing, drug treatment, and ATP monitoring of organoids. An ATP sensor was developed to facilitate the first successful attempt on whole-course monitoring the growth status of fragile organoids. To realize a clinically applicable automatic system for the drug testing of lung cancer, a microfluidic chip based automated system was developed to perform entire organoid-based drug response test, bridging the gap between laboratorial manipulation and clinical practices, as it outperformed previous methods by improving data repeatability, eliminating human error/sample loss, and more importantly, providing a more accurate and comprehensive evaluation of drug effects.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jiyu Xi
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bowen Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhicheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhibo Zheng
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Geng Z, Zhang M, Huang B, Zhang X, Wang Z. A novel nanoparticle fluorescent probe based on a water-soluble conjugated polymer for real-time monitoring of ATP fluctuation and configuration of the Golgi apparatus during the inhibition of glycolysis. Anal Chim Acta 2024; 1304:342572. [PMID: 38637042 DOI: 10.1016/j.aca.2024.342572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Adenosine 5'-triphosphate (ATP) plays an important role in cell metabolism and has been regarded as an indicator of cell survival and damage. Golgi apparatus participates in the signal transduction processes of substance transport, ion homeostasis and stress when extracellular substances enter cells. Till now, there is no fluorescent probe for monitoring Golgi ATP level fluctuation and visualizing the configuration change of the Golgi apparatus during the inhibition of glycolysis. RESULTS Herein, we report the synthesis of a novel water-soluble cationic polythiophene derivative (PEMTEA) that can be employed as a fluorescent sensor for measuring ATP in the Golgi apparatus. PEMTEA self-assembles into PT-NP nanoparticles in aqueous solution with a diameter of approximately 2 nm. PT-NP displays high sensitivity and superb selectivity towards ATP with a detection limit of 90 nM and a linear detection range from 0 to 3.0 μM. The nanoparticles show low toxicity to HepG2 cells and good photostability in the Golgi apparatus. With the stimulation of Ca2+, PT-NP was practically applied to real-time monitor of endogenous ATP levels in the Golgi apparatus through fluorescence microscopy. Finally, we studied the relationship between the concentration of ATP and configuration of the Golgi apparatus during the inhibition of glycolysis using PT-NP. SIGNIFICANCE We have demonstrated that PT-NP can not only indicate the fluctuation and distribution of ATP in the Golgi apparatus, but also give the information of the configuration change of the Golgi apparatus at the single-cell level during the inhibition of glycolysis.
Collapse
Affiliation(s)
- Zhirong Geng
- College of Pharmacy, Jiangsu Joint International Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China.
| | - Miaomiao Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China
| | - Binghuan Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China
| | - Xiaohong Zhang
- College of Pharmacy, Jiangsu Joint International Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Wang Z, Chen Z, Zhang Z, Wang H, Zhang H. Highly-ordered assembled organic fluorescent materials for high-resolution bio-sensing: a review. Biomater Sci 2024; 12:2019-2032. [PMID: 38469672 DOI: 10.1039/d3bm02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organic fluorescent materials (OFMs) play a crucial role in the development of biosensors, enabling the extraction of biochemical information within cells and organisms, extending to the human body. Concurrently, OFM biosensors contribute significantly to the progress of modern medical and biological research. However, the practical applications of OFM biosensors face challenges, including issues related to low resolution, dispersivity, and stability. To overcome these challenges, scientists have introduced interactive elements to enhance the order of OFMs. Highly-ordered assembled OFMs represent a novel material type applied to biosensors. In comparison to conventional fluorescent materials, highly-ordered assembled OFMs typically exhibit robust anti-diffusion properties, high imaging contrast, and excellent stability. This approach has emerged as a promising method for effectively tracking bio-signals, particularly in the non-invasive monitoring of chronic diseases. This review introduces several highly-ordered assembled OFMs used in biosensors and also discusses various interactions that are responsible for their assembly, such as hydrogen bonding, π-π interaction, dipole-dipole interaction, and ion electrostatic interaction. Furthermore, it delves into the various applications of these biosensors while addressing the drawbacks that currently limit their commercial application. This review aims to provide a theoretical foundation for designing high-performance, highly-ordered assembled OFM biosensors suitable for practical applications. Additionally, it sheds light on the evolving trends in OFM biosensors and their application fields, offering valuable insights into the future of this dynamic research area.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zilong Chen
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zhenhao Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| |
Collapse
|
5
|
Zhang K, Xi J, Zhao H, Wang Y, Xue J, Liang N, Wei Z. A dual-functional microfluidic chip for guiding personalized lung cancer medicine: combining EGFR mutation detection and organoid-based drug response test. LAB ON A CHIP 2024; 24:1762-1774. [PMID: 38352981 DOI: 10.1039/d3lc00974b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Many efforts have been paid to advance the effectiveness of personalized medicine for lung cancer patients. Sequencing-based molecular diagnosis of EGFR mutations has been widely used to guide the selection of anti-lung-cancer drugs. Organoid-based assays have also been developed to ex vivo test individual responses to anti-lung-cancer drugs. After addressing several technical difficulties, a new combined strategy, in which anti-cancer medicines are first selected based on molecular diagnosis and then ex vivo tested on organoids, has been realized in a single dual-functional microfluidic chip. A DNA-based nanoruler has been developed to detect the existence of EGFR mutations and shrink the detection period from weeks to hours, compared with sequencing. The employment of the DNA-based nanoruler creates a possibility to purposively test anti-cancer drugs, either EGFR-TKIs or chemotherapy drugs, not both, on limited amounts of organoids. Moreover, a DNA-based nanosensor has been developed to recognize intracellular ATP variation without harming cell viability, realizing in situ monitoring of the whole course growth status of organoids for on-chip drug response test. The dual-functional microfluidic chip was validated by both cell lines and clinical samples from lung cancer patients. Furthermore, based on the dual-functional microfluidic chip, a fully automated system has been developed to span the divide between experimental procedures and therapeutic approaches. This study constitutes a novel way of combining EGFR mutation detection and organoid-based drug response test on an individual patient for guiding personalized lung cancer medicine.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiyu Xi
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Huiting Zhao
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
6
|
Zhang K, Wang Y, Xue J, Liang N, Wei Z. Real-time monitoring ATP variation in human cancer organoids for a long term by DNA-based nanosensor. Anal Chim Acta 2023; 1275:341608. [PMID: 37524457 DOI: 10.1016/j.aca.2023.341608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Cancer organoids have become promising tools for predicting drug responses on many different types of cancer. Detecting the adenosine triphosphate (ATP) has currently been considered as a decisive test to profile the growth status and drug responses of organoids. ATP profiling using commercial ATP detection kits, which involve cell lysis, can be performed at a single time spot, causing a clinical dilemma of selecting the optimal time spot to adopt diverse cancer types and patients. This study provides a feasible solution to this dilemma by developing a DNA-based ATP nanosensor to realize real-time ATP monitoring in organoids for a long term. The employment of DNA materials ensures high biocompatibility and low cytotoxicity, which are crucial for fragile organoids; The usage of tetrahedral DNA framework ensures cell permeability and intracellular ATP detection; The introduction of ATP-mediated molecular replacement ensures the high sensitivity and selectivity of ATP recognition. These features result in the first successful attempt on real-time monitoring ATP in organoids for up to 26 days and gaining growth status curves for the whole duration of a drug sensitivity test on human lung cancer organoids.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
7
|
Wang N, Yang Y, Zhang M, Zhu Q, Li Z. Lysosomal Adenosine Triphosphate-Activated Upconversion Nanoparticle/Carbon Dot Composite for Ratiometric Imaging of Hepatotoxicity. Anal Chem 2022; 94:15738-15745. [DOI: 10.1021/acs.analchem.2c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ningning Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yaqing Yang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng Zhang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qianqian Zhu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Zhang GQ, Chi KN, Yao C, Yang T, Zhang RL, Hu R, Yang YH. Amino-Functionalized Perylenediimide Derivative with Dual Fluorescence Emission for the Detection of Ascorbic Acid in Vivo and Vitro. LUMINESCENCE 2022; 37:1741-1750. [PMID: 35896481 DOI: 10.1002/bio.4350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
The rapid, sensitive, and selective detection of ascorbic acid (AA) is of significance in medical assays and diagnostics. In this work, a new amino perylenediimide derived (APDI) ratiometric fluorescent probe based on the specific redox reaction of cobalt oxyhydroxide (CoOOH) and AA was constructed. APDI exhibited dual fluorescence emission peaks at 549 and 596 nm with an excitation wavelength of 494 nm. In the presence of CoOOH, the dual fluorescence could be quenched. The dominant fluorescence quenching mechanism was caused by the inner filter effect. Using the red emission as a reference, the fluorescence intensity ratio (F549 /F596 ) was linearly correlated with the concentration of AA over a range of 0.05 to 1 μM. The limit of detection for AA was found to be 17 nM. Importantly, the probe was successfully used to detect AA in living cells. Therefore, this high sensitivity and selectivity strategy could directly survey the AA levels in real samples.
Collapse
Affiliation(s)
- Gui-Qun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P.R. China
| | - Kuan-Neng Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P.R. China
| | - Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P.R. China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P.R. China
| | - Rui-Lin Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, P.R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P.R. China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P.R. China
| |
Collapse
|
9
|
Huang B, Liang B, Zhang R, Xing D. Molecule fluorescent probes for adenosine triphosphate imaging in cancer cells and in vivo. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Sun W, Gu X, Dong P, Chu L, Zhang Z, Cheng Z, Yang F. Cell-membrane-targeted near-infrared fluorescent probe for detecting extracellular ATP. Analyst 2022; 147:4167-4173. [DOI: 10.1039/d2an00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe for detecting extracellular ATP.
Collapse
Affiliation(s)
- Wan Sun
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xiangling Gu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Pingxuan Dong
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Lianjun Chu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhongyu Zhang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhenyuan Cheng
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Fan Yang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, China
| |
Collapse
|
11
|
Li LL, Lv WY, Wang Y, Li YF, Li CM, Huang CZ. DNA Logic Nanodevices for Real-Time Monitoring of ATP in Lysosomes. Anal Chem 2021; 93:15331-15339. [PMID: 34756034 DOI: 10.1021/acs.analchem.1c02829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA logic nanodevices have prospects in molecular recognitions but still face challenges in achieving DNA computation-controlled regulation in specific compartments of living cells. By incorporating the i-motif sequence and ATP aptamers into a Y-shaped DNA (Y-DNA) structure, and applying gold nanoparticles (AuNPs) as the transporting carrier, herein we present a new type of DNA logic nanodevices to monitor the ATP levels in lysosomes of living cells. Triple energy transfers including dual fluorescent resonance energy transfers (FRETs) and a nanometal surface energy transfer (NSET) occurred in the DNA logic nanodevices. It was identified that the proposed nanodevices perform an AND logic operation to output FRET signals only when an endogenous proton and ATP simultaneously exist in the cellular microenvironment. Owing to the use of the i-motif sequence, the nanodevices have lysosome-recognizing capacity without causing alkalization of the acidic organelle, making DNA computation-controlled regulation at the level of cellular organelles achievable. These DNA logic nanodevices show high application prospects in lysosome-related cellular function and disease treatment.
Collapse
Affiliation(s)
- Li Li Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
12
|
Chen XX, Hou MJ, Mao GJ, Wang WX, Xu F, Li Y, Li CY. ATP-responsive near-infrared fluorescence MOF nanoprobe for the controlled release of anticancer drug. Mikrochim Acta 2021; 188:287. [PMID: 34350511 DOI: 10.1007/s00604-021-04953-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023]
Abstract
A near-infrared (NIR) fluorescence nanoprobe named RhI-DOX@ZIF-90 has been synthesized by wrapping the guest molecule (RhI and DOX) into ZIF-90 framework. The nanoprobe itself is non-fluorescent and the drug (DOX) is inactive. Upon the addition of ATP, the structure of RhI-DOX@ZIF-90 is degraded. The fluorescence of RhI is recovered and DOX is released. The nanoprobe can detect ATP with high sensitivity and selectivity. There is good linear relationship between the nanoprobe and ATP concentration from 0.25 to 10 mM and the detection limit is 0.10 mM. The nanoprobe has the ability to monitor the change of ATP level in living cells and DOX is released inducing apoptosis of cancer cells. RhI-DOX@ZIF-90 is capable of targeting mitochondria, which provides a basis for improving the efficiency of drug delivery by mitochondrial administration. In particular, the nanoprobe is preferentially accumulated in the tumor sites and detect ATP in tumor mice by fluorescence imaging using near-infrared fluorescence. At the same time, DOX can be released accurately in tumor sites and have good anti-tumor efficiency. So, this nanoprobe is a reliable tool to realize early diagnosis of cancer and improve effect of anticancer drug.
Collapse
Affiliation(s)
- Xi-Xi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Mei-Jia Hou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.,College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
13
|
Hong S, Pawel GT, Pei R, Lu Y. Recent progress in developing fluorescent probes for imaging cell metabolites. Biomed Mater 2021; 16. [PMID: 33915523 DOI: 10.1088/1748-605x/abfd11] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/29/2021] [Indexed: 01/12/2023]
Abstract
Cellular metabolites play a crucial role in promoting and regulating cellular activities, but it has been difficult to monitor these cellular metabolites in living cells and in real time. Over the past decades, iterative development and improvements of fluorescent probes have been made, resulting in the effective monitoring of metabolites. In this review, we highlight recent progress in the use of fluorescent probes for tracking some key metabolites, such as adenosine triphosphate, cyclic adenosine monophosphate, cyclic guanosine 5'-monophosphate, Nicotinamide adenine dinucleotide (NADH), reactive oxygen species, sugar, carbon monoxide, and nitric oxide for both whole cell and subcellular imaging.
Collapse
Affiliation(s)
- Shanni Hong
- Department of Medical Imaging Technology, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.,CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Gregory T Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
14
|
Yang T, Xu CL, Li SR, Hu ZR, Feng GD, Gao HC. Development of a fluorescent probe for detecting Al 3+ in cooked wheaten food based on phosphonic acid group functionalized polythiophene derivatives. LUMINESCENCE 2021; 36:1600-1607. [PMID: 34018312 DOI: 10.1002/bio.4093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022]
Abstract
As an unnecessary trace element, the content of aluminium in biological systems should be strictly controlled. Therefore, it was necessary to develop a convenient method for detection of aluminium ions. In this study, a fluorescent probe based on polythiophene derivatives was developed and used to detect Al3+ in Chinese traditional pasta. The fluorescence of this probe showed a significant decrease in hexamethylenetetramine-HCl buffer solution (pH 5) when Al3+ was present. In addition, the probe exhibited good sensitivity and selectivity to Al3+ over other metal ions when EDTA was used as the masking agent. Fluorescence intensity had a good linear relationship with the Al3+ concentration in the range 0.1-10 μM and the limit of detection for Al3+ was 39 nM. Furthermore, the probe was successfully applied to detect Al3+ in food samples and the results were consistent with ICP-AES.
Collapse
Affiliation(s)
- Ting Yang
- Inner Mongolia North Heavy Industries Group Corp. LTD, Baotou, China
| | - Chun-Ling Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Song-Rui Li
- College of Chemistry, Jilin University, Changchun, China
| | - Zhi-Ru Hu
- College of Chemistry, Jilin University, Changchun, China
| | - Guo-Dong Feng
- College of Chemistry, Jilin University, Changchun, China
| | - Hai-Cheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Kim NH, Kim BW, Moon H, Yoo H, Kang RH, Hur JK, Oh Y, Kim BM, Kim D. AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells. Anal Chim Acta 2021; 1152:338269. [PMID: 33648642 DOI: 10.1016/j.aca.2021.338269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A turn-on fluorescent nanoprobe (named AAP-1), based on an aggregation-induced emission luminogen (AIEgen), is disclosed for the detection of adenosine triphosphate (ATP), which is an essential element in the biological system. Organic fluorophore (named TPE-TA) consists of tetraphenylethylene (TPE, sensing and signaling moiety) and mono-triamine (TA, sensing moiety), and it forms an aggregated form in aqueous media as a nanoprobe AAP-1. The nanoprobe AAP-1 has multiple electrostatic interactions as well as hydrophobic interactions with ATP, and it displays superior selectivity toward ATP, reliable sensitivity, with a detection limit around 0.275 ppb, and fast responsive (signal within 10 s). Such a fluorescent probe to monitor ATP has been actively pursued throughout fundamental and translational research areas. In vitro assay and a successful cellular ATP imaging application was demonstrated in cancer cells and embryonic stem cells. We expect that our work warrants further ATP-related studies throughout a variety of fields.
Collapse
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junho K Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
Hu Y, Long S, Fu H, She Y, Xu Z, Yoon J. Revisiting imidazolium receptors for the recognition of anions: highlighted research during 2010-2019. Chem Soc Rev 2020; 50:589-618. [PMID: 33174897 DOI: 10.1039/d0cs00642d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazolium based receptors selectively recognize anions, and have received more and more attention. In 2006 and 2010, we reviewed the mechanism and progress of imidazolium salt recognition of anions, respectively. In the past ten years, new developments have emerged in this area, including some new imidazolium motifs and the identification of a wider variety of biological anions. In this review, we discuss the progress of imidazolium receptors for the recognition of anions in the period of 2010-2019 and highlight the trends in this area. We first classify receptors based on motifs, including some newly emerging receptors, as well as new advances in existing receptor types at this stage. Then we discuss separately according to the types of anions, including ATP, GTP, DNA and RNA.
Collapse
Affiliation(s)
- Ying Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | | | | | | | | | | |
Collapse
|
17
|
Geng X, Sun Y, Guo Y, Zhao Y, Zhang K, Xiao L, Qu L, Li Z. Fluorescent Carbon Dots for in Situ Monitoring of Lysosomal ATP Levels. Anal Chem 2020; 92:7940-7946. [PMID: 32406677 DOI: 10.1021/acs.analchem.0c01335] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monitoring the ATP levels in lysosomes in situ is crucial for understanding their involvement in various biological processes but remains difficult due to the interference of ATP in other organelles or the cytoplasm. Here, we report a lysosome-specific fluorescent carbon dot (CD), which can be used to detect ATP in acidic lysosomes with "off-on" changes of yellow fluorescence. These CDs were successfully applied in real-time monitoring of the fluctuating concentration of lysosomal ATP induced by drug stimulation (e.g., chloroquine, etoposide, and oligomycin). Because of the excellent specificity, these CDs are promising agents for drug screening and medical diagnostics through lysosomal ATP monitoring.
Collapse
Affiliation(s)
- Xin Geng
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yifei Guo
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yanmin Zhao
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
18
|
So RC, Carreon-Asok AC. Molecular Design, Synthetic Strategies, and Applications of Cationic Polythiophenes. Chem Rev 2019; 119:11442-11509. [DOI: 10.1021/acs.chemrev.8b00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Regina C. So
- Department of Chemistry, Ateneo de Manila University, Loyola Heights, Katipunan, Quezon City 1108, Philippines
| | - Analyn C. Carreon-Asok
- Department of Chemistry, Ateneo de Manila University, Loyola Heights, Katipunan, Quezon City 1108, Philippines
- Department of Chemistry, Xavier University−Ateneo de Cagayan University, Corrales Avenue, Cagayan de Oro City 9000, Philippines
| |
Collapse
|
19
|
Liu L, Zhao L, Cheng D, Yao X, Lu Y. Highly Selective Fluorescence Sensing and Imaging of ATP Using a Boronic Acid Groups-Bearing Polythiophene Derivate. Polymers (Basel) 2019; 11:E1139. [PMID: 31277286 PMCID: PMC6680583 DOI: 10.3390/polym11071139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
A boronic acid groups-bearing polythiophene derivate (L) was designed and synthesized for highly sensitive fluorescence detection of ATP based on a multisite-binding coupled with analyte-induced aggregation strategy. L has a polythiophene backbone as fluorophores and two functional side groups, i.e., quaternary ammonium group and boronic acid group, as multibinding sites for ATP. When various structural analogues such as ADP, AMP, and various inorganic phosphates were added into the aqueous solution of L, only ATP caused a remarkable fluorescence quenching of about 60-fold accompanied by obvious color changes of solution from yellow to purple. The detection limit is estimated to be 2 nM based on 3σ/slope. With the advantage of good water solubility, low toxicity, and highly selective response to ATP, L was successfully utilized as a probe to real-time assay activity of adenylate kinase (ADK) and map fluorescent imaging of ATP in living cells.
Collapse
Affiliation(s)
- Lihua Liu
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Dandan Cheng
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xinyi Yao
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
20
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Zhou W, Dong S, Lin Y, Lu C. Insights into the role of nanostructure in the sensing properties of carbon nanodots for improved sensitivity to reactive oxygen species in living cells. Chem Commun (Camb) 2018; 53:2122-2125. [PMID: 28133675 DOI: 10.1039/c7cc00169j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The surface states of carbon nanodots (CDs) were engineered by controlling the chemical structure on the surface of the CDs, which play an important role in the chemiluminescence sensing properties of CDs towards peroxynitrite. Their application in monitoring exogenous and endogenous release of peroxynitrite in living cells is demonstrated.
Collapse
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shaoqing Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Endo S, Kato R, Sawada K, Hattori T. Two-Dimensional Array ATP/ADP Sensitive Image Sensor with a Uniform Distribution of Chemically Immobilized Apyrase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shinnosuke Endo
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Hibarigaoka 1-1 Tenpaku, Toyohashi, 441-8580
| | - Ryo Kato
- Cooperative Research Facility Center, Toyohashi University of Technology, Hibarigaoka 1-1 Tenpaku, Toyohashi, 441-8580
| | - Kazuaki Sawada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Hibarigaoka 1-1 Tenpaku, Toyohashi, 441-8580
| | - Toshiaki Hattori
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Hibarigaoka 1-1 Tenpaku, Toyohashi, 441-8580
| |
Collapse
|
23
|
Liu C, Zhang Q, An N, Wang J, Zhao L, Lu Y. A new water-soluble polythiophene derivative as a probe for real-time monitoring adenosine 5'-triphosphatase activity in lysosome of living cells. Talanta 2018; 182:396-404. [PMID: 29501170 DOI: 10.1016/j.talanta.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/16/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022]
Abstract
Detection of the adenosine 5'-triphosphatase (ATPase) activity in lysosome of living cells is of great importance for clinical diagnosis of many related diseases, including cancer. In this work, a new water-soluble polythiophene derivative named ZnPT bearing both quaternary ammonium salt groups and dipicolylamine-Zn2+ (DPA-Zn2+) complexes in its side chain, was designed and synthesized for this propose. The probe mainly localized to lysosome with good biocompatibility and membrane penetration. The real-time, continuous, direct, and label-free assays were achieved through a fluorescence "turn-on" mode by taking advantages of the reaction specificity of ATPase with ATP and the high binding selectivity of ZnPT toward ATP substrate over its hydrolysis product (ADP). This well designed strategy should provide a facile and effective way for investigating ATPase-relevant biological processes.
Collapse
Affiliation(s)
- Cui Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Nianqi An
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
24
|
Huang B, Geng Z, Yan S, Li Z, Cai J, Wang Z. Water-Soluble Conjugated Polymer as a Fluorescent Probe for Monitoring Adenosine Triphosphate Level Fluctuation in Cell Membranes during Cell Apoptosis and in Vivo. Anal Chem 2017; 89:8816-8821. [PMID: 28752761 DOI: 10.1021/acs.analchem.7b01212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adenosine triphosphate (ATP) is used as the energy source in cells and plays crucial roles in various cellular events. The cellular membrane is the protective barrier for the cytoplasm of living cells and involved in many essential biological processes. Many fluorescent probes for ATP have been successfully developed, but few of these probes were appropriate for visualizing ATP level fluctuation in cell membranes during the apoptotic cell death process. Herein, we report the synthesis of a new water-soluble cationic polythiophene derivative that can be utilized as a fluorescent sensor for detecting ATP in cell membranes. Poly((3-((4-methylthiophen-3-yl)oxy)propyl)triphenylphosphonium chloride) (PMTPP) exhibits high sensitivity and good selectivity to ATP, and the detection limit is 27 nM. The polymer shows low toxicity to live cells and excellent photostability in cell membranes. PMTPP was practically utilized for real-time monitoring of ATP levels in the cell membrane through fluorescence microscopy. We have demonstrated that the ATP levels in cell membranes increased during the apoptotic cell death process. The probe was also capable of imaging ATP levels in living mice.
Collapse
Affiliation(s)
- Binghuan Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zan Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Jun Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University , Nanjing, Jiangsu 210093, China
| |
Collapse
|
25
|
Gajendiran M, Choi J, Kim SJ, Kim K, Shin H, Koo HJ, Kim K. Conductive biomaterials for tissue engineering applications. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.02.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Zhu JH, Yu C, Chen Y, Shin J, Cao QY, Kim JS. A self-assembled amphiphilic imidazolium-based ATP probe. Chem Commun (Camb) 2017; 53:4342-4345. [PMID: 28367556 DOI: 10.1039/c7cc01346a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel amphiphilic imidazolium-based probe containing a dansyl fluorophore and a long cetyl chain has been developed for ATP recognition. The probe forms self-assembled micelle-like aggregates at low concentration in its aqueous solution and can selectively recognize ATP among other bioactive anions with a significant enhancement in fluorescence emission.
Collapse
Affiliation(s)
- Jiang-Hua Zhu
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China.
| | - Chuan Yu
- Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
| | - Yong Chen
- Institute for Advanced Study, Nanchang University, Nanchang 330031, P. R. China
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Qian-Yong Cao
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
27
|
An N, Zhang Q, Wang J, Liu C, Shi L, Liu L, Deng L, Lu Y. A new FRET-based ratiometric probe for fluorescence and colorimetric analyses of adenosine 5′-triphosphate. Polym Chem 2017. [DOI: 10.1039/c6py02001a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new ratiometric probe for ATP was designed based on the binding-induced modulation of FRET coupled with the ACQ sensing mechanism.
Collapse
Affiliation(s)
- Nianqi An
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Qiang Zhang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Jing Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Cui Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Luqing Shi
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Lihua Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Ludi Deng
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Yan Lu
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
28
|
Tang Y, Kong X, Liu ZR, Xu A, Lin W. Lysosome-Targeted Turn-On Fluorescent Probe for Endogenous Formaldehyde in Living Cells. Anal Chem 2016; 88:9359-9363. [PMID: 27653930 DOI: 10.1021/acs.analchem.6b02879] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As one of the simplest reactive carbonyl species, formaldehyde is implicated in nervous system diseases and cancer. Organelles play crucial roles in various physiological processes in living cells. Accordingly, the detection of endogenous formaldehyde at the subcellular level is of high interest. We herein describe the development of the first organelle-targeted fluorescent formaldehyde probe (Na-FA-Lyso). The new probe exhibits favorable features including a large fluorescence enhancement (about 350-fold) and a fast response to formaldehyde. Significantly, the novel probe Na-FA-Lyso was employed to visualize the endogenous formaldehyde in the lysosomes in living cells for the first time.
Collapse
Affiliation(s)
- Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Zhan-Rong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - An Xu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan , Jinan, Shandong 250022, P. R. China
| |
Collapse
|