1
|
Bellassai N, D'Agata R, Spoto G. Plasmonic aptasensor with antifouling dual-functional surface layer for lysozyme detection in food. Anal Chim Acta 2023; 1283:341979. [PMID: 37977796 DOI: 10.1016/j.aca.2023.341979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Antifouling coatings are critically necessary for optical biosensors for various analytical application sectors, from medical diagnostics to foodborne pathogen detection. They help avoid non-specific protein/cell attachment on the active biosensor surface and catch the analytes directly in the complex media. Advances in antifouling plasmonic surfaces have been mainly focused on detecting clinical biomarkers in real biofluids, whereas developing antifouling coatings for direct analysis of analytes in complex media has been scarcely investigated for food quality control and safety. Herein, we propose a new low-fouling poly-l-lysine (PLL)-based surface layer for directly detecting an allergen protein, lysozyme, in the food matrix using surface plasmon resonance. The PLL-based polymer contains densely immobilized anionic oligopeptide side chains to create an electric charge-balanced layer able to repel the non-specific adsorption of undesired molecules on the biosensor surface. It also includes sparsely attached aptamer probes for capturing lysozyme directly in food sources with no pre-analytical sample treatment. We optimized the surface layer fabrication condition and tested the dual-functional surface to evaluate its ability to detect the target protein selectively. The developed analytical approach allowed for achieving a limit of detection of 0.04 μg mL-1 (2.95 nM) and a limit of quantification of 0.13 μg mL-1 (8.95 nM). Lysozyme was successfully quantified in milk samples using the plasmonic dual-functional aptasensor without sample pre-treatment or target isolation, illustrating the device's utility.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
2
|
Miller AA, Rao AS, Nelakanti SR, Kujalowicz C, Shi T, Rodriguez T, Ellington AD, Stovall GM. Systematic Review of Aptamer Sequence Reporting in the Literature Reveals Widespread Unexplained Sequence Alterations. Anal Chem 2022; 94:7731-7737. [PMID: 35420426 PMCID: PMC9179646 DOI: 10.1021/acs.analchem.1c04407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aptamers have been the subject of more than 144 000 papers to date. However, there has been a growing concern that discrepancies in the reporting of aptamer research limit the reliability of these reagents for research and other applications. These observations noting inconsistencies in the use of our RNA antilysozyme aptamer served as an impetus for our systematic review of the reporting of aptamer sequences in the literature. Our detailed examination of the literature citing the RNA antilysozyme aptamer revealed that 93% of the 61 publications reviewed reported unexplained altered sequences with 96% of those using DNA variants. The 10 most cited aptamers were examined using a standardized methodology in order to categorize the extent to which the sequences themselves and altered sequences were adequately described in the literature. Our review of 780 aptamer publications spanned decades, multiple journals, and research groups and revealed that 41% of the papers reported unexplained sequence alterations or omitted sequences. We identified 10 common categories of sequence alterations including deletions, substitutions, and additions, among others. Overall, our findings can be used as a starting point for building better practices in author submissions and publication standards, elevating the rigor and reproducibility of aptamer research.
Collapse
Affiliation(s)
- Alexandra A Miller
- Texas Institute for Discovery Education in Science Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Abhijit S Rao
- Texas Institute for Discovery Education in Science Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sujana R Nelakanti
- Texas Institute for Discovery Education in Science Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher Kujalowicz
- Texas Institute for Discovery Education in Science Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ted Shi
- Texas Institute for Discovery Education in Science Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ted Rodriguez
- Texas Institute for Discovery Education in Science Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D Ellington
- Institute for Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gwendolyn M Stovall
- Texas Institute for Discovery Education in Science Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States.,Texas Institute for Discovery Education in Science High School Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
|
4
|
Jiang L, Li Y, Wang L, Guo J, Liu W, Meng G, Zhang L, Li M, Cong L, Sun M. Recent Insights Into the Prognostic and Therapeutic Applications of Lysozymes. Front Pharmacol 2021; 12:767642. [PMID: 34925025 PMCID: PMC8678502 DOI: 10.3389/fphar.2021.767642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lysozymes are naturally occurring enzymes present in a variety of biological organisms, such as bacteria, fungi, and animal bodily secretions and tissues. It is also the main ingredient of many ethnomedicines. It is well known that lysozymes and lysozyme-like enzymes can be used as anti-bacterial agents by degrading bacterial cell wall peptidoglycan that leads to cell death, and can also inhibit fungi, yeasts, and viruses. In addition to its direct antimicrobial activity, lysozyme is also an important component of the innate immune system in most mammals. Increasing evidence has shown the immune-modulatory effects of lysozymes against infection and inflammation. More recently, studies have revealed the anti-cancer activities of lysozyme in multiple types of tumors, potentially through its immune-modulatory activities. In this review, we summarized the major functions and underlying mechanisms of lysozymes derived from animal and plant sources. We highlighted the therapeutic applications and recent advances of lysozymes in cancers, hypertension, and viral diseases, aiming toseeking alternative therapies for standard medical treatment bypassing side effects. We also evaluated the role of lysozyme as a promising cancer marker for prognosis to indicate the outcomes recurrence for patients.
Collapse
Affiliation(s)
- Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yunhe Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Jian Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Guixian Meng
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lei Zhang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Miao Li
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lina Cong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
5
|
Gheorghiu M. A short review on cell-based biosensing: challenges and breakthroughs in biomedical analysis. J Biomed Res 2020; 35:255-263. [PMID: 33888671 PMCID: PMC8383170 DOI: 10.7555/jbr.34.20200128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Current cell-based biosensors have progressed substantially from mere alternatives to molecular bioreceptors into enabling tools for interfacing molecular machineries and gene circuits with microelectronics and for developing groundbreaking sensing and theragnostic platforms. The recent literature concerning whole-cell biosensors is reviewed with an emphasis on mammalian cells, and the challenges and breakthroughs brought along in biomedical analyses through novel biosensing concepts and the synthetic biology toolbox. These recent innovations allow development of cell-based biosensing platforms having tailored performances and capable to reach the levels of sensitivity, dynamic range, and stability suitable for high analytic/medical relevance. They also pave the way for the construction of flexible biosensing platforms with utility across biological research and clinical applications. The work is intended to stimulate interest in generation of cell-based biosensors and improve their acceptance and exploitation.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Biosensors Department, International Centre of Biodynamics, Bucharest 060101, Romania
| |
Collapse
|
6
|
Abstract
Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.
Collapse
Affiliation(s)
- Feiyun Cui
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Yun Yue
- Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ziming Zhang
- Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - H. Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| |
Collapse
|
7
|
Fu F, Li L, Luo Q, Li Q, Guo T, Yu M, Song Y, Song E. Selective and sensitive detection of lysozyme based on plasmon resonance light-scattering of hydrolyzed peptidoglycan stabilized-gold nanoparticles. Analyst 2019; 143:1133-1140. [PMID: 29392248 DOI: 10.1039/c7an01570d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The simple, economic, rapid, and sensitive detection of lysozyme has an important significance for disease diagnosis since it is a potential biomarker. In this work, a new detection strategy for lysozyme was developed based on the change of the plasmon resonance light scattering (PRLS) signal of peptidoglycan stabilized gold nanoparticles (PGN-AuNPs). Peptidoglycan (PGN) was employed as a stabilizer to prepare PGN-AuNPs which have the properties of a uniform particle size, good stability, and a specific biological function. Due to the specific cleavage of lysozyme to PGN, a very simple specific and sensitive detection method for lysozyme was developed based on the PRLS signal of PGN-AuNPs after mixing with lysozyme for 1.5 h. The enhanced PRLS signals (ΔIPRLS, at 560 nm) increased linearly with increasing lysozyme in the range 5 nM to 1600 nM with the detection limit down to 2.32 nM (ΔIPRLS = 41.6397 + 0.5332c, R = 0.9961). When the PGN-AuNP based method was applied to assay lysozyme in authentic human serum samples, the recovery efficiency was 106.76-119.32% with the relative standard deviations in the range of 0.14-3.11%, showing good feasibility. The PGN-AuNP based method for lysozyme assay developed here is simple, rapid, selective, and sensitive, which is expected to provide a feasible new method for the diagnosis or prognosis of lysozyme-related diseases in a clinical setting.
Collapse
Affiliation(s)
- Fei Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Koyun S, Akgönüllü S, Yavuz H, Erdem A, Denizli A. Surface plasmon resonance aptasensor for detection of human activated protein C. Talanta 2018; 194:528-533. [PMID: 30609568 DOI: 10.1016/j.talanta.2018.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/21/2023]
Abstract
The aim of this study is a highly sensitive and selective label-free surface plasmon resonance (SPR) aptasensor preparation for the specific detection of human activated protein C (APC). In the first step, DNA aptamer was complexed with N-methacryloyl-L-cysteine (MAC) monomer. Then, cyanamide and 2-hydroxyethyl methacrylate solution was mixed with the DNA-Apt/MAC complex. Two different SPR sensors (Random-DNA and HEMA-MAC polymeric films) were also prepared by following the same experimental procedure. The characterization of SPR aptasensors was done by contact angle, atomic force microscopy, and ellipsometer analysis. Selectivity studies of SPR aptasensors were performed in the presence of bovine serum albumin, hemoglobin and myoglobin. Desorption studies were performed by using 0.025 M NaCl solution. The limit of detection (LOD) and limit of quantification (LOQ) values of DNA-Apt SPR aptasensor was determined as 1.5 ng/mL and 5.2 ng/mL.
Collapse
Affiliation(s)
- Seda Koyun
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Semra Akgönüllü
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Handan Yavuz
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Arzum Erdem
- Ege University, Faculty of Pharmacy, Analytical Chemistry Department, 35100, Izmir, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey.
| |
Collapse
|
9
|
Zheng Y, Wang Q, Yang X, Li Z, Gao L, Zhang H, Nie W, Geng X, Wang K. Investigation of the interactions between aptamer and misfolded proteins: From monomer and oligomer to fibril by single-molecule force spectroscopy. J Mol Recognit 2017; 31. [PMID: 29143447 DOI: 10.1002/jmr.2686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Increasing knowledge on the understanding interactions of aptamer with misfolded proteins (including monomer, oligomer, and amyloid fibril) is crucial for development of aggregation inhibitors and diagnosis of amyloid diseases. Herein, the interactions of lysozyme monomer-, oligomer-, and amyloid fibril-aptamer were investigated using single-molecule force spectroscopy. The results revealed that the aptamer screened against lysozyme monomer could also bind to oligomer and amyloid fibril, in spite of the recognition at a lower binding probability. It may be attributed to the inherent structural differences of misfolded proteins and the flexible conformation of aptamer. In addition, dynamic force spectra showed that there were similar dissociation paths in the dissociation process of lysozyme monomer-, oligomer-, and amyloid fibril-aptamer complexes. It showed that the dissociation only passed 1 energy barrier from the binding state to the detachment. However, the dynamic parameters suggested that the oligomer- and amyloid fibril-aptamer were more stable than lysozyme monomer-aptamer. The phenomena may result from the exposure of aptamer-recognized sequences on the surface and the electrostatic interactions. This work demonstrated that single-molecule force spectroscopy could be a powerful tool to study the binding behavior of the aptamer with misfolded proteins at single-molecule level, providing abundant information for researches and comprehensive applications of aptamer probes in diagnosis of amyloid diseases.
Collapse
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Lei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| |
Collapse
|
10
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|