1
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
2
|
Qin P, Chen P, Deng N, Tan L, Yin BC, Ye BC. Switching the Activity of CRISPR/Cas12a Using an Allosteric Inhibitory Aptamer for Biosensing. Anal Chem 2022; 94:15908-15914. [DOI: 10.1021/acs.analchem.2c04315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peipei Qin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Pinru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Nan Deng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Liu Tan
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bin-Cheng Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Liu T, Li Z, Chen M, Zhao H, Zheng Z, Cui L, Zhang X. Sensitive electrochemical biosensor for Uracil-DNA glycosylase detection based on self-linkable hollow Mn/Ni layered doubled hydroxides as oxidase-like nanozyme for cascade signal amplification. Biosens Bioelectron 2021; 194:113607. [PMID: 34507096 DOI: 10.1016/j.bios.2021.113607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes have been widely used in biosensors instead of natural enzymes because of low cost, high stability and ease of storage. However, few works use oxidase-like nanozymes to fabricate electrochemical biosensors. Herein, we proposed a sensitive electrochemical biosensor to detect uracil-DNA glycosylase (UDG) based on the hollow Mn/Ni layered doubled hydroxides (h-Mn/Ni LDHs) as oxidase-like nanozyme. Briefly, the h-Mn/Ni LDHs, which was prepared by a facile hydrothermal method, exhibited excellent oxidase-like activity because the hollow structure provided rich active sites and high specific surface area. Then, the signal probes were constructed by assembling the hairpin DNA (hDNA), single DNA1 and DNA2 on the h-Mn/Ni LDHs, respectively. In the presence of UDG, the uracil bases in the stem of hDNA were specifically excised, generating apyrimidinic (AP) sites and inducing the unwinding of the hDNA. Afterwards, the h-Mn/Ni LDHs@Au-hDNA/DNA1 was connected on the electrode via hybridization between unwinded hDNA and capture DNA (cDNA). Subsequently, the self-linking process allowed the retention of numerous h-Mn/Ni LDHs through simple DNA hybridization to amplify the signal of o-phenylenediamine (o-PD). Unlike many peroxidase-like nanozyme-based electrochemical biosensors, there is no need to add H2O2 during the experimental process, which effectively reduced the background signal as well as improved the stability of the biosensor. As expected, the biosensor exhibited excellent performance with a wide linear range and a low detection limit. This work highlights an appealing opportunity to develop a no H2O2 platform based on h-Mn/Ni LDHs for future application in biological analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhiwen Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, 271016, PR China
| | - Mohan Chen
- Jinan Foreign Language School, Jinan, Shandong Province, 250353, China
| | - Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zekun Zheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
4
|
Song J, Kim H, Lee CY, Yoon J, Yoo WS, Park HG. Identification of thyroid hormone/thyroid hormone receptor interaction based on aptamer-assisted protein-induced fluorescence enhancement. Biosens Bioelectron 2021; 191:113444. [PMID: 34175646 DOI: 10.1016/j.bios.2021.113444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/27/2022]
Abstract
We herein describe a novel method to identify thyroid hormone (TH)/thyroid hormone receptor (TR) interaction, termed aptamer-assisted protein-induced fluorescence enhancement (AptPIFE). In this method, a detection probe consisting of an RNA strand incorporating TH-specific aptamer and a Cy3-labeled DNA strand holds TH in close proximity to Cy3. The corresponding TR then binds to the TH near Cy3, consequently stimulating Cy3 to emit a significantly enhanced fluorescence through PIFE phenomenon. Based on this simple yet efficient design principle, we successfully identified the interaction of TH with TR within 10 min, down to 0.37 pM with excellent specificity. The practical and robust applicability of this method was also successfully validated by properly screening TR antagonists and reliably quantifying TH present in real clinical serum samples from patients with hyperthyroidism and healthy volunteers.
Collapse
Affiliation(s)
- Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hansol Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junhyeok Yoon
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won Sang Yoo
- Department of Internal Medicine, Dankook University College of Medicine, 119, Dandae-ro, Dongnam-gu, Cheonan-si, 31116, Republic of Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Li BR, Tang H, Yu RQ, Jiang JH. Single-Nanoparticle ICP-MS for Sensitive Detection of Uracil-DNA Glycosylase Activity. Anal Chem 2021; 93:8381-8385. [PMID: 34100608 DOI: 10.1021/acs.analchem.1c01447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Single-nanoparticle inductively coupled plasma mass spectrometry (SP-ICP-MS) has demonstrated unique advantages for the detection of biological samples. However, methods for enzyme activity detection based on SP-ICP-MS technology have been rarely explored. Here we report the development of a novel SP-ICP-MS assay for uracil-DNA glycosylase (UDG) activity detection based on its ability to specifically recognize and remove uracil to induce the cleavage of the DNA probe. Our design allows the generation of single gold nanoparticles correlated to the specific enzymatic reaction for a highly sensitive SP-ICP-MS measurement. The developed assay enables sensitive UDG activity detection with a detection limit of 0.0003 U/mL. The cell lysate analysis by the developed assay reveals its applicability for the detection of UDG activity in real samples. It is envisioned that our design may provide a new paradigm for developing the SP-ICP-MS assay for enzyme activity detection in biological samples.
Collapse
Affiliation(s)
- Bang-Rui Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hao Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ru-Qin Yu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Sensitive Electrochemical Detection of Tryptophan Using a Hemin/G-Quadruplex Aptasensor. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we design an electrochemical aptasensor with an enzyme-free amplification method to detect tryptophan (Trp). For the amplified electrochemical signal, the screen-printed electrode was modified with dendritic gold nanostructures (DGNs)/magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica hybrid (Fe3O4@SiO2/DABCO) to increase the surface area as well as electrical conductivity, and the hemin/G-quadruplex aptamer was immobilized. The presence of Trp improved the catalytic characteristic of hemin/G-quadruplex structure, which resulted in the efficient catalysis of the H2O2 reduction. As the concentration of Trp increased, the intensity of H2O2 reduction signal increased, and Trp was measured in the range of 0.007–200 nM with a detection limit of 0.002 nM. Compared with previous models, our sensor displayed higher detection sensitivity and specificity for Trp. Furthermore, we demonstrated that the proposed aptasensor successfully determined Trp in human serum samples, thereby proving its practical applicability.
Collapse
|
7
|
Hu Y, Wang Z, Chen Z, Pan L. Switching the activity of Taq polymerase using clamp-like triplex aptamer structure. Nucleic Acids Res 2020; 48:8591-8600. [PMID: 32644133 PMCID: PMC7470972 DOI: 10.1093/nar/gkaa581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/31/2020] [Accepted: 06/27/2020] [Indexed: 01/22/2023] Open
Abstract
In nature, allostery is the principal approach for regulating cellular processes and pathways. Inspired by nature, structure-switching aptamer-based nanodevices are widely used in artificial biotechnologies. However, the canonical aptamer structures in the nanodevices usually adopt a duplex form, which limits the flexibility and controllability. Here, a new regulating strategy based on a clamp-like triplex aptamer structure (CLTAS) was proposed for switching DNA polymerase activity via conformational changes. It was demonstrated that the polymerase activity could be regulated by either adjusting structure parameters or dynamic reactions including strand displacement or enzymatic digestion. Compared with the duplex aptamer structure, the CLTAS possesses programmability, excellent affinity and high discrimination efficiency. The CLTAS was successfully applied to distinguish single-base mismatches. The strategy expands the application scope of triplex structures and shows potential in biosensing and programmable nanomachines.
Collapse
Affiliation(s)
- Yingxin Hu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
| | - Zhiyu Wang
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Linqiang Pan
- To whom correspondence should be addressed. Tel: +86 27 87556070; Fax: +86 27 87543130;
| |
Collapse
|
8
|
Bagheri Hashkavayi A, Cha BS, Lee ES, Kim S, Park KS. Advances in Exosome Analysis Methods with an Emphasis on Electrochemistry. Anal Chem 2020; 92:12733-12740. [PMID: 32902258 DOI: 10.1021/acs.analchem.0c02745] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes, small extracellular vesicles, are released by various cell types. They are found in bodily fluids, including blood, urine, serum, and saliva, and play essential roles in intercellular communication. Exosomes contain various biomarkers, such as nucleic acids and proteins, that reflect the status of their parent cells. Since they influence tumorigenesis and metastasis in cancer patients, exosomes are excellent noninvasive potential indicators for early cancer detection. Aptamers with specific binding properties have distinct advantages over antibodies, making them effective versatile bioreceptors for the detection of exosome biomarkers. Here, we review various aptamer-based exosome detection approaches based on signaling methods, such as fluorescence, colorimetry, and chemiluminescence, focusing on electrochemical strategies that are easier, cost-effective, and more sensitive than others. Further, we discuss the clinical applications of electrochemical exosome analysis strategies as well as future research directions in this field.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Pan L, Hu Y, Ding T, Xie C, Wang Z, Chen Z, Yang J, Zhang C. Aptamer-based regulation of transcription circuits. Chem Commun (Camb) 2019; 55:7378-7381. [PMID: 31173001 DOI: 10.1039/c9cc03141c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose synthetic DNA/RNA transcription circuits based on specific aptamer recognition. By mimicking transcription factor regulation, combined with specific enzyme/DNA aptamer binding, multiple biomolecules including DNA, RNA, polymerase, restriction enzymes and methylase were used as regulators. In addition, multi-level cascading networks and methylation-switch circuits were also established. This regulation strategy has the potential to expand the toolkit of in vitro synthetic biology.
Collapse
Affiliation(s)
- Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
11
|
Jung Y, Lee CY, Park KS, Park HG. Sensitive and specific detection of proteins based on target-responsive DNA polymerase activity. Anal Chim Acta 2019; 1059:80-85. [PMID: 30876635 DOI: 10.1016/j.aca.2019.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
We herein describe a novel method for the detection of target protein based on the target-responsive DNA polymerase activity. In the sensor, two different types of DNA aptamers with the respective functions: one binds to the target protein and the other binds to DNA polymerase, are rationally engineered and combined to form the detection probe that regulates DNA polymerase activity in response to the target protein. In the presence of target protein, the detection probe becomes destabilized and stops the inhibition of DNA polymerase activity. Consequently, the active DNA polymerase initiates the primer extension reaction on the target-specific DNA aptamer, which recycles the target protein to promote another activation cycle of DNA polymerase. In addition, DNA polymerase also catalyzes the primer extension reaction on the primer/template complex in conjugation with TaqMan probe, leading to the significantly enhanced fluorescence intensities. With this novel strategy, we detected a model target protein, lysozyme with a limit of detection as low as 0.80 nM. In addition, the practical applicability of this system was successfully demonstrated by determining lysozyme in human serum.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Park Y, Lee CY, Kang S, Kim H, Park KS, Park HG. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction. NANOTECHNOLOGY 2018; 29:085501. [PMID: 29269591 DOI: 10.1088/1361-6528/aaa3a3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.
Collapse
Affiliation(s)
- Yeonkyung Park
- Department of Chemical and Biomolecular Engineering (BK21+Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Wu K, Ma C, Deng Z, Fang N, Tang Z, Zhu X, Wang K. Label-free and nicking enzyme-assisted fluorescence signal amplification for RNase H determination based on a G-quadruplexe/thioflavin T complex. Talanta 2018; 182:142-147. [PMID: 29501133 DOI: 10.1016/j.talanta.2018.01.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
In this paper, we describe a novel, label-free and nicking enzyme-assisted fluorescence signal amplification strategy that demonstrates to be cost efficient, sensitive, and unique for assaying the RNase H activity and inhibition based on G-quadruplex formation using a thioflavin T (ThT) dye. This novel assay method is able to detect RNase H with a detection limit of 0.03 U /mL and further exhibits a good linearity R2 = 0.9923 at a concentration range of 0.03-1 U/mL under optimized conditions. Moreover, the inhibition effect of gentamycin on the RNase H activity is also studied. This strategy provides a potential tool for the biochemical enzyme analysis and inhibitor screening.
Collapse
Affiliation(s)
- Kefeng Wu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Zhiyi Deng
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Zhenwei Tang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xingxing Zhu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410081, China
| |
Collapse
|
14
|
Kim H, Lee CY, Song J, Yoon J, Park KS, Park HG. Protein-induced fluorescence enhancement for a simple and universal detection of protein/small molecule interactions. RSC Adv 2018; 8:39913-39917. [PMID: 35558217 PMCID: PMC9091315 DOI: 10.1039/c8ra08515c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/19/2018] [Indexed: 12/04/2022] Open
Abstract
We herein describe a novel and efficient method for the detection of protein/small molecule (SM) interactions, which relies on the protein-induced fluorescence enhancement (PIFE). In this method, a duplex probe is designed to position Cy3 and SM at the optimal distance to maximize the effect of PIFE, which is utilized as the key component. In the presence of target proteins that bind to SM, the Cy3 is guided close to the target proteins, which significantly enhances the fluorescence signal through a process of PIFE. With this approach, we successfully analyzed a model target protein, streptavidin (STV) that interacts with biotin (BTN) in less than 10 min without any washing steps. In addition, the practical applicability of this method was demonstrated by reliably determining STV in human serum. Finally, the universal applicability of this method was demonstrated by monitoring the interaction between folate and folate receptors. We herein describe a novel and efficient method for the detection of protein/small molecule (SM) interactions, which relies on the protein-induced fluorescence enhancement (PIFE).![]()
Collapse
Affiliation(s)
- Hansol Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Junhyeok Yoon
- Department of Chemical and Biomolecular Engineering (BK 21+ Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering
- College of Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program)
- KAIST
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
15
|
Ahn JK, Lee CY, Park KS, Park HG. Abasic Site-Assisted Inhibition of Nicking Endonuclease Activity for the Sensitive Determination of Uracil DNA Glycosylase. Biotechnol J 2017; 13:e1700603. [DOI: 10.1002/biot.201700603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jun Ki Ahn
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
16
|
Tang X, Han J, Wang Y, Bao X, Ni L, Wang L, Li L. A highly sensitive turn-on fluorescent chemosensor for recognition of Zn 2+ and Hg 2+ and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:177-183. [PMID: 28494380 DOI: 10.1016/j.saa.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
A fluorescence probe has been designed and synthesized, and applied with a combined theoretical and experimental study. Research suggests that the probe can be used to sense Zn2+ and Hg2+ through selective turn-on fluorescence responses in the aqueous HEPES buffer (0.05M, pH=7.4). The limit of detection (LOD) were determined as 1.46×10-7M (Zn2+) and 2.50×10-7M (Hg2+). Moreover, based on DFT, the geometry optimizations of probe 1, [1-Hg2+] complex and [1-Zn2+] complex were carried out using the Gaussian 09 program, in which the B3LYP function was used. The electronic properties of free probe 1 and the metal complexes were studied based on the Natural Bond Orbital (NBO) analyses. The probe 1 has also been successfully applied to detection of Zn2+ and Hg2+ in living cells.
Collapse
Affiliation(s)
- Xu Tang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xu Bao
- School of Computer and Communications Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Liang Ni
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Longhua Li
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|