1
|
Ahangari A, Mahmoodi P, Zolfigol MA, Mohammadzadeh A, Salouti M. Rapid detection of Brucella cells using a gold nanoparticle-based aptasensor via a simple colorimetric method. BMC Vet Res 2024; 20:513. [PMID: 39533298 PMCID: PMC11558872 DOI: 10.1186/s12917-024-04370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Brucellosis is a major worldwide zoonotic disease that is caused by Brucella spp. and threatens the health of communities. Novel methods for rapid detection of Brucella bacteria are beneficial and necessary in preventing infection and subsequent economic losses. Constructing biosensors with nanoparticles is a promising approach for identification of pathogenic bacteria in a short time. This study aimed to introduce a new detection method of Brucella cells using a biosensor, based on gold nanoparticles and a specific aptamer, via a colorimetric reaction. In this work, gold nanoparticles (GNPs) were synthesized and attached to the aptamer through electrostatic bonding. The binding of aptamer to gold nanoparticles was confirmed by Uv/vis spectrophotometry, FT-IR, transmission electron microscope (TEM) and zeta sizer (DLS). RESULTS In the presence of the bacterial cells, aptamers were bound to their targets, and the surfaces of the nanoparticles were depleted from aptamers resulting in intensified peroxidation activity of GNPs, and with the addition of 3, 3', 5, 5'-tetramethylbenzidine (TMB), the color of the solution was changed from red to purple, which indicated the presence of Brucella. The sensitivity of the aptasensor was investigated using different concentrations of Brucella cells and its specificity was confirmed against several species of bacteria. The results showed that the designed aptasensor was more sensitive compared to PCR assay method with the ability to detect 1.5 × 101 CFU/mL of the bacterial cells. CONCLUSION These findings indicate that the designed aptasensor can be used as a simple and rapid diagnostic tool to detect Brucella cells without need to experts and expensive laboratory equipment.
Collapse
Affiliation(s)
- Azam Ahangari
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mojtaba Salouti
- Nanobiotechnology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
2
|
Tahmasebi P, Farokhi S, Ahmadi G, Roushani M. Electrochemical impedance biosensor based on Y chromosome-specific sequences for fetal sex determination. Mikrochim Acta 2023; 190:483. [PMID: 38006412 DOI: 10.1007/s00604-023-06061-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
A new electrochemical biosensor based on the sequence of chromosome Y (SRY) has been introduced to determine the gender of the fetus. At first, the DNA probe was designed based on the SRY gene sequence on chromosome Y. Then, a suitable functional group was added to the DNA probe, and it has been immobilized on the surface of the electrode modified with a nanocomposite containing Cu(OH)2 @N-C n-boxes. This substrate causes more DNA probes to connect to the electrode surface by increasing the effective surface area. The presence of the SRY sequence in the DNA sample extracted from blood was detected by the electrochemical signal of the bio-sensor. After optimizing the parameters, the fabricated genosensor showed linear responses in the two concentration ranges containing 0.5 fM to 50 pM and 50 pM to 500 nM. The limit of detection (LOD) for the proposed method was 0.16 fM. The proposed genosensor has been successfully used to determine the gender of the fetus using cell-free fetal DNA (cffDNA) in the blood plasma of several pregnant mothers. This method has advantages such as being simple, portable, accurate, and non-invasive for early determination of the gender of the fetus and early diagnosis of X-linked genetic disorders.
Collapse
Affiliation(s)
- Parisa Tahmasebi
- Department of Biology, Faculty of Science, Ilam University, Ilam, Iran.
| | - Somayeh Farokhi
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, Iran
| | - Gelavizh Ahmadi
- Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, Iran.
| |
Collapse
|
3
|
Ahangari A, Mahmoodi P, Mohammadzadeh A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol Bioeng 2023; 120:41-56. [PMID: 36253878 DOI: 10.1002/bit.28266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
An infectious disease that is transmitted from animals to humans and vice-versa is called zoonosis. Bacterial zoonotic diseases can re-emerge after they have been eradicated or controlled and are among the world's major health problems which inflict tremendous burden on healthcare systems. The first step to encounter such illnesses can be early and precise detection of bacterial pathogens to further prevent the following losses due to their infections. Although conventional methods for diagnosing pathogens, including culture-based, polymerase chain reaction-based, and immunological-based techniques, benefit from their advantages, they also have their own drawbacks, for example, taking long time to provide results, and requiring laborious work, expensive materials, and special equipment in certain conditions. Consequently, there is a greater tendency to introduce simple, innovative, quicker, accurate, and low-cost detection methods to effectively characterize the causative agents of infectious diseases. Biosensors, therefore, seem to practically be one of those novel promising diagnostic tools on this aim. These are effective and reliable elements with high sensitivity and specificity, that their usability can even be improved in medical diagnostic systems when empowered by nanoparticles. In the present review, recent advances in the development of several bio and nano biosensors, for rapid detection of zoonotic bacteria, have been discussed in details.
Collapse
Affiliation(s)
- Azam Ahangari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
4
|
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U, Lal R, Toteja R. DNA barcoding, an effective tool for species identification: a review. Mol Biol Rep 2023; 50:761-775. [PMID: 36308581 DOI: 10.1007/s11033-022-08015-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
DNA barcoding is a powerful taxonomic tool to identify and discover species. DNA barcoding utilizes one or more standardized short DNA regions for taxon identification. With the emergence of new sequencing techniques, such as Next-generation sequencing (NGS), ONT MinION nanopore sequencing, and Pac Bio sequencing, DNA barcoding has become more accurate, fast, and reliable. Rapid species identification by DNA barcodes has been used in a variety of fields, including forensic science, control of the food supply chain, and disease understanding. The Consortium for Barcode of Life (CBOL) presents various working groups to identify the universal barcode gene, such as COI in metazoans; rbcL, matK, and ITS in plants; ITS in fungi; 16S rRNA gene in bacteria and archaea, and creating a reference DNA barcode library. In this article, an attempt has been made to analyze the various proposed DNA barcode for different organisms, strengths & limitations, recent advancements in DNA barcoding, and methods to speed up the DNA barcode reference library construction. This study concludes that constructing a reference library with high species coverage would be a major step toward identifying species by DNA barcodes. This can be achieved in a short period of time by using advanced sequencing and data analysis methods.
Collapse
Affiliation(s)
- Sandeep Antil
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | | | - S Sripoorna
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Jyoti Dagar
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Pooja Bhagat
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, Delhi, 110 021, India
| | - Utkarsh Sood
- The Energy and Resources Institute, IHC Complex, New Delhi, 110003, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, New Delhi, 110003, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
5
|
Yu Z, Fang W, Yang Y, Yao H, Hu P, Shi J. Non-PCR Ultrasensitive Detection of Viral RNA by a Nanoprobe-Coupling Strategy: SARS-CoV-2 as an Example. Adv Healthc Mater 2022; 11:e2200031. [PMID: 35678310 PMCID: PMC9347949 DOI: 10.1002/adhm.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Indexed: 01/27/2023]
Abstract
Developing efficient and highly sensitive diagnostic techniques for early detections of pathogenic viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is vitally important for preventing its widespread. However, the conventional polymerase chain reaction (PCR)-based detection features high complexity, excessive time-consumption, and labor-intensiveness, while viral protein-based detections suffer from moderate sensitivity and specificity. Here, a non-PCR but ultrasensitive viral RNA detection strategy is reported based on a facile nanoprobe-coupling strategy without enzymatic amplification, wherein PCR-induced bias and other shortcomings are successfully circumvented. This approach endows the viral RNA detection with ultra-low background to maximum signal ratio in the linear signal amplification by using Au nanoparticles as reporters. The present strategy exhibits 100% specificity toward SARS-CoV-2 N gene, and ultrasensitive detection of as low as 52 cp mL-1 of SARS-CoV-2 N gene without pre-PCR amplification. This approach presents a novel ultrasensitive tool for viral RNA detections for fighting against COVID-19 and other types of pathogenic virus-caused diseases.
Collapse
Affiliation(s)
- Zhiguo Yu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yannan Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbaneQueensland4072Australia
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200331P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200331P. R. China
| |
Collapse
|
6
|
Ahmad Z, Tahseen S, Wasi A, Ganie IB, Shahzad A, Emamverdian A, Ramakrishnan M, Ding Y. Nanotechnological Interventions in Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2667. [PMID: 35957097 PMCID: PMC9370753 DOI: 10.3390/nano12152667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Agriculture is an important sector that plays an important role in providing food to both humans and animals. In addition, this sector plays an important role in the world economy. Changes in climatic conditions and biotic and abiotic stresses cause significant damage to agricultural production around the world. Therefore, the development of sustainable agricultural techniques is becoming increasingly important keeping in view the growing population and its demands. Nanotechnology provides important tools to different industrial sectors, and nowadays, the use of nanotechnology is focused on achieving a sustainable agricultural system. Great attention has been given to the development and optimization of nanomaterials and their application in the agriculture sector to improve plant growth and development, plant health and protection and overall performance in terms of morphological and physiological activities. The present communication provides up-to-date information on nanotechnological interventions in the agriculture sector. The present review deals with nanoparticles, their types and the role of nanotechnology in plant growth, development, pathogen detection and crop protection, its role in the delivery of genetic material, plant growth regulators and agrochemicals and its role in genetic engineering. Moreover, the role of nanotechnology in stress management is also discussed. Our aim in this review is to aid researchers to learn quickly how to use plant nanotechnology for improving agricultural production.
Collapse
Affiliation(s)
- Zishan Ahmad
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Sabaha Tahseen
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Adla Wasi
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Irfan Bashir Ganie
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Anwar Shahzad
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.T.); (A.W.); (I.B.G.); (A.S.)
| | - Abolghassem Emamverdian
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (A.E.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
He Q, Ma S, Wang J, Chen K, Dong J, Zhou J, Chen D, Ning Y. Graphene Oxide-Based Fluorometric Determination of the eta Gene in Pseudomonas aeruginosa Using Nicking Enzyme-Mediated Cyclic Signal Amplification. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1980885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qizhi He
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- Discipline of Basic Medical Application, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Shuheng Ma
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- Discipline of Basic Medical Application, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Jingya Wang
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Keke Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Jun Dong
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- Discipline of Basic Medical Application, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Ji Zhou
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Danna Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
8
|
A Novel Fluorescence Nanobiosensor based on Modified Graphene Quantum dots-HTAB for Early Detection of Fetal Sexuality with Cell Free Fetal DNA. J Fluoresc 2021; 31:1843-1853. [PMID: 34519933 DOI: 10.1007/s10895-021-02809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Recently, prenatal diagnosis with non-invasive insight is a progressive approach in clinical medicine to prevent the birth of infants with genetic abnormalities. Cell free fetal DNA (cffDNA) makes up approximately 3-6% of the bare DNA in the mother's bloodstream which is produced during pregnancy and can be used to detect fetal sex and disease in the early stages. SRY is a gene located on the chromosome Y which determines the sex of male infants. In this work, a new nanobiosensor based on the fluorescence property of r-GQD@HTAB (reduced graphene quantum dots modified with hexadecyl trimethyl ammonium bromide) was fabricated that can identify the SRY gene in cffDNA with high sensitivity and specificity. A detection limit of 0.082 nM and the linear response range of 0.16-1.5 nM was obtained for the method. It was able to discriminate the target sequence with high specificity from the non-target sequences. This biosensor includes a new graphene quantum dot modified with a surfactant, HTAB which leads to high fluorescence emission of it and then more precise differentiation between ssDNA and DsDNA in a solution. In conclusion, it provides a novel analytical tool for detection of small amount of DNA and fetal sex and genetic diseases in early stage with prenatal and noninvasive tests and applicable for clinical use.
Collapse
|
9
|
Guan N, Li Y, Yang H, Hu P, Lu S, Ren H, Liu Z, Soo Park K, Zhou Y. Dual-functionalized gold nanoparticles probe based bio-barcode immuno-PCR for the detection of glyphosate. Food Chem 2021; 338:128133. [PMID: 33091994 DOI: 10.1016/j.foodchem.2020.128133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 01/16/2023]
Abstract
Glyphosate (GLYP) was the most widely used broad-spectrum herbicide in the world. Herein, a gold nanoparticle (AuNP) probe dual-functionalized with anti-GLYP antibody and double-stranded oligonucleotides was synthesized. An AuNP-based bio-barcode immuno-PCR (AuNP-BB-iPCR) based on the probe was developed for sensitive detection of GLYP in food samples without high-cost and time-consuming experiments. GLYP detection was accomplished with a linear range from 61.1 pg g-1 to 31.3 ng g-1 and a detection limit of 4.5 pg g-1 which was 7 orders of magnitude lower than that of conventional ELISA (70 μg g-1) developed using the same antibody. The recoveries of GLYP from soybean, cole and maize samples were 99.8%, 102.6% and 103.7%, respectively, and all relative standard deviation values were below 12.9%. The assay time (including food samples preparation) of AuNP-BB-iPCR was 4 h. The proposed AuNP-BB-iPCR exhibits potential for sensitive detection of GLYP in foodstuffs and environment.
Collapse
Affiliation(s)
- Naiyu Guan
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yansong Li
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Hualin Yang
- College of Animal Sciences, Yangtze University, Jingzhou 434023, PR China
| | - Pan Hu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Shiying Lu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Honglin Ren
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Zengshan Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Yu Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; College of Animal Sciences, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
10
|
Naderlou E, Salouti M, Amini B, Amini A, Narmani A, Jalilvand A, Shahbazi R, Zabihian S. Enhanced sensitivity and efficiency of detection of Staphylococcus aureus based on modified magnetic nanoparticles by photometric systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:810-817. [PMID: 32476515 DOI: 10.1080/21691401.2020.1748638] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Staphylococcus aureus is an important infectious factor in the food industry and hospital infections. Many methods are used for detecting bacteria but they are mostly time-consuming, poorly sensitive. In this study, a nano-biosensor based on iron nanoparticles (MNPs) was designed to detect S. aureus. MNPs were synthesized and conjugated to Biosensors. Then S. aureus was lysed and nano-biosensor (MNP-TiO2-AP-SMCC-Biosensors) was added to the lysed bacteria. After bonding the bacterial genome to the nano-biosensor, MNPs were separated by a magnet. Bacterial DNA was released from the surface of nano-biosensor and researched by Nano-drop spectrophotometry. The results of SEM and DLS revealed that the size of MNPs was 20-25 nm which increased to 38-43 nm after modification and addition of biosensors. The designed nano-biosensor was highly sensitive and specific for the detection of S. aureus. The limit of detection (LOD) was determined as 230 CFU mL-1. There was an acceptable linear correlation between bacterial concentration and absorption at 3.7 × 102-3.7× 107 whose linear diagram and regression was Y = 0.242X + 2.08 and R2 = .996. Further, in the presence of other bacteria as a negative control, it was absolutely specific. The sensitivity of the designed nano-biosensor was investigated and compared through PCR.
Collapse
Affiliation(s)
- Ebrahim Naderlou
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Bahram Amini
- Department of Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Amini
- Department of Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Asghar Narmani
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ahmad Jalilvand
- Department of Pathology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Shahbazi
- Faculty of Sciences, Department of Microbiology, Islamic Azad University, Zanjan, Iran
| | - Saeid Zabihian
- Department of Pathology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Munir S, Ahmed S, Ibrahim M, Khalid M, Ojha SC. A Spellbinding Interplay Between Biological Barcoding and Nanotechnology. Front Bioeng Biotechnol 2020; 8:883. [PMID: 33014994 PMCID: PMC7506030 DOI: 10.3389/fbioe.2020.00883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Great scientific research with improved potential in probing biological locales has remained a giant stride. The use of bio-barcodes with the potential use of nanotechnology is a hallmark being developed among recent advanced techniques. Biobarcoding is a novel method used for screening biomolecules to identify and divulge ragbag biodiversity. It establishes successful barcoding projects in the field of nanomedical technology for massively testing disease diagnosis and treatment. Biobarcoding and nanotechnology are recently developed technologies that provide unique opportunities and challenges for multiplex detection such as DNAs, proteins and nucleic acids of animals, plants, viruses, and various other species. These technologies also clump drug delivery, gene delivery, and DNA sequencing. Bio-barcode amplification assay (BCA) is used at large for the detection and identification of proteins and DNAs. DNA barcoding combined with nanotechnology has been proven highly sensitive rendering fast uniplex and multiplex detection of pathogens in food, blood, and other specimens. This review takes a panoramic view of current advances in nano bio-barcodes which have been summarized to explore additional applications such as detection of cytokines, neurotransmitters, cancer markers, prostate-specific antigens, and allergens. In the future, it will also be possible to detect some fungi, algae, protozoa, and other pollutants in food, agriculture, and clinical samples. Using these technologies, specific and efficient sensors would possibly be developed that can perform swift detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Shehla Munir
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Taheri H, Amini B, Kamali M, Asadi M, Naderlou E. Functionalization of anti-Brucella antibody based on SNP and MNP nanoparticles for visual and spectrophotometric detection of Brucella. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117891. [PMID: 31818642 DOI: 10.1016/j.saa.2019.117891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
An Immuno-Nano-Biosensor with high sensitivity was designed based on iron and silica nanoparticles to detect B. abortus. Briefly explain, primary polyclonal antibody (IgG1) was conjugated on surface magnetic nanoparticles (MNPs) to form MNP-IgG1. Secondary polyclonal antibody (IgG2) and Horseradish Peroxidase enzyme were conjugated on silica nanoparticles (SNPs) to form HRP-SNP-IgG2. HRP-SNP-IgG2. MNP-IgG1 and HRP-SNP-IgG2 were added to B. abortus. The MNP-IgG1-B.abortus-IgG2-SNP-HRP complex was isolated from the reaction mixture using a magnet. After that, tetramethylbenzidine was added to the complex. The reaction was stopped with HCl and investigated using UV-Vis spectrophotometry. The nanoparticles' structure and size were investigated using SEM and DLS. Immuno-Nano-Biosensor sensitivity and specificity were determined. The SEM and DLS results indicated that the SNPs, MNPs, HRP-SNP-IgG2 and MNP-IgG1 size and structure were 35, 44, 60 and 56 nm, respectively. In addition, a good linear correlation was observed at 102-107 CFU mL-1 concentrations, which their linear equation and regression were Y = 0.3× + 0.18 and R2 0.982, respectively. The limitation of detecting B. abortus was 160 CFU mL-1. Finally, the results demonstrated that those designed Immuno-Nano-Biosensor could be specifically detected B. abortus and B. melitensis in real samples.
Collapse
Affiliation(s)
- Hamidreza Taheri
- Nano biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahram Amini
- Department of biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mehdi Kamali
- Nano biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Masoud Asadi
- Department of biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ebrahim Naderlou
- Department of biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Xu X, Winterwerber P, Ng D, Wu Y. DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Top Curr Chem (Cham) 2020; 378:31. [PMID: 32146596 PMCID: PMC7060966 DOI: 10.1007/s41061-020-0292-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
DNA nanotechnology, based on sequence-specific DNA recognition, could allow programmed self-assembly of sophisticated nanostructures with molecular precision. Extension of this technique to the preparation of broader types of nanomaterials would significantly improve nanofabrication technique to lower nanometer scale and even achieve single molecule operation. Using such exquisite DNA nanostructures as templates, chemical synthesis of polymer and inorganic nanomaterials could also be programmed with unprecedented accuracy and flexibility. This review summarizes recent advances in the synthesis and assembly of polymer and inorganic nanomaterials using DNA nanostructures as templates, and discusses the current challenges and future outlook of DNA templated nanotechnology.
Collapse
Affiliation(s)
- Xuemei Xu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan, 430074, People's Republic of China
| | - Pia Winterwerber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - David Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan, 430074, People's Republic of China.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Elahi N, Kamali M, Baghersad MH, Amini B. A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110113. [DOI: 10.1016/j.msec.2019.110113] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
|
15
|
Cui X, Jin M, Zhang C, Du P, Chen G, Qin G, Jiang Z, Zhang Y, Li M, Liao Y, Wang Y, Cao Z, Yan F, Abd El-Aty AM, Wang J. Enhancing the Sensitivity of the Bio-barcode Immunoassay for Triazophos Detection Based on Nanoparticles and Droplet Digital Polymerase Chain Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12936-12944. [PMID: 31670953 DOI: 10.1021/acs.jafc.9b05147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An ultrasensitive bio-barcode competitive immunoassay method based on droplet digital polymerase chain reaction (ddPCR) was developed for the determination of triazophos. Gold nanoparticles (AuNPs) were coated with monoclonal antibodies (mAbs) and complementary double-stranded DNA (dsDNA), which included bio-barcode DNA and thiol-capped DNA. Magnetic nanoparticle (MNP) probes were constructed by modifying the MNPs with ovalbumin-hapten conjugates (OVA-hapten). The target pesticide and OVA-hapten on the surface of the MNP probes competed with the AuNP probes simultaneously, and then the bio-barcode DNA was released for quantification by ddPCR. The concentration of released DNA was inversely proportional to the concentration of pesticide to be tested. Under the optimum conditions, the competitive immunoassay exhibited a wide linear range of 0.01-20 ng/mL and a low detection limit of 0.002 ng/mL. Spike recovery tests were carried out using apple, rice, cabbage, and cucumber samples to verify the feasibility of the method. The recovery and relative standard deviations (RSDs) of the technique ranged from 76.9 to 94.4% and from 10.8 to 19.9%, respectively. To further validate the results, a linear correlation analysis was performed between the proposed method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Consequently, the bio-barcode immunoassay based on nanoparticles and ddPCR, an ultrasensitive method, showed great potential for the determination of target pesticides in real samples.
Collapse
Affiliation(s)
- Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Chan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Pengfei Du
- Institute of Agro-Food Science and Technology , Shandong Academy of Agricultural Sciences , Jinan , Shandong 250100 , People's Republic of China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Guoxin Qin
- Agro-Product Quality Safety and Testing Technology Research Institute , Guangxi Academy of Agricultural Sciences , Nanning , Guangxi 530007 , People's Republic of China
| | - Zejun Jiang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Zhen Cao
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| | - Feiyan Yan
- Agro-Product Quality Safety and Testing Technology Research Institute , Guangxi Academy of Agricultural Sciences , Nanning , Guangxi 530007 , People's Republic of China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine , Cairo University , 12211 Giza , Egypt
- Department of Medical Pharmacology, Medical Faculty , Ataturk University , 25240 Erzurum , Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products , Chinese Academy of Agricultural Science , Beijing 100081 , People's Republic of China
| |
Collapse
|
16
|
Mohajeri N, Imani M, Akbarzadeh A, Sadighi A, Zarghami N. An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: Possible applications in medical and biotechnological utilities. Biosens Bioelectron 2019; 144:111633. [DOI: 10.1016/j.bios.2019.111633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
17
|
Wang Y, Jin M, Chen G, Cui X, Zhang Y, Li M, Liao Y, Zhang X, Qin G, Yan F, Abd El-Aty A, Wang J. Bio-barcode detection technology and its research applications: A review. J Adv Res 2019; 20:23-32. [PMID: 31193255 PMCID: PMC6522771 DOI: 10.1016/j.jare.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
With the rapid development of nanotechnology, the bio-barcode assay (BCA), as a new diagnostic tool, has been gradually applied to the detection of protein and nucleic acid targets and small-molecule compounds. BCA has the advantages of high sensitivity, short detection time, simple operation, low cost, good repeatability and good linear relationship between detection results. However, bio-barcode technology is not yet fully formed as a complete detection system, and the detection process in all aspects and stages is unstable. Therefore, studying the optimal reaction conditions, optimizing the experimental steps, exploring the multi-residue detection of small-molecule substances, and preparing immuno-bio-barcode kits are important research directions for the standardization and commercialization of BCA. The main theme of this review was to describe the principle of BCA, provide a comparison of its application, and introduce the single-residue and multi-residue detection of macromolecules and single-residue detection of small molecules. We also compared it with other detection methods, summarized its feasibility and limitations, expecting that with further improvement and development, the technique can be more widely used in the field of stable small-molecule and multi-residue detection.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Mingjie Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yun Liao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Xiuyuan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Guoxin Qin
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Feiyan Yan
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
18
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
19
|
Chang F, Huang L, Guo C, Xie G, Li J, Diao Q. Graphdiyne-Based One-Step DNA Fluorescent Sensing Platform for the Detection of Mycobacterium tuberculosis and Its Drug-Resistant Genes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35622-35629. [PMID: 31502436 DOI: 10.1021/acsami.9b15248] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The accurate and early detection of Mycobacterium tuberculosis (Mtb) is of great significance for the clinical diagnosis and treatment of tuberculosis. In this work, we report a facile method for the controllable synthesis of a novel few-layered two-dimensional graphdiyne nanosheet (GDY NS) with a thickness of only ∼0.9 nm via an electrochemical lithium-intercalation strategy, which possesses a prominent fluorescence quenching effect. The few-layered GDY NS with its strong adsorptivity for single-stranded DNA is first proposed as a new fluorescent sensing platform for the real-time detection of DNA with excellent specificity, multiplicity, and superhigh sensitivity (limit of detection as low as 25 pM). This sensing platform can be further applied for the Mtb detection from clinical samples and the identification of drug-resistant mutants with a low background and a high signal-to-noise ratio. Herein, we provide a potential basis for the clinical development of rapid, sensitive, and accurate substitutes for the molecular diagnosis of Mtb and its drug-resistant genes.
Collapse
Affiliation(s)
- Fan Chang
- Central Laboratory of Yongchuan Hospital , Chongqing Medical University , Chongqing 402160 , China
| | - Lijun Huang
- Central Laboratory of Yongchuan Hospital , Chongqing Medical University , Chongqing 402160 , China
| | - Chaozhong Guo
- Research Institute for New Materials Technology , Chongqing University of Arts and Sciences , Chongqing 402160 , China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics of Education , Chongqing Medical University , Chongqing 400016 , China
| | - Jiaqiang Li
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China
| | - Qizhi Diao
- Central Laboratory of Yongchuan Hospital , Chongqing Medical University , Chongqing 402160 , China
| |
Collapse
|
20
|
Shams A, Rahimian Zarif B. Designing an immunosensor for detection of Brucella abortus based on coloured silica nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2562-2568. [PMID: 31213114 DOI: 10.1080/21691401.2019.1626403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brucellosis has always been a threat to the health and economics of societies. We report a new colorimetric immunoassay based on colored silica nanoparticles for detection of Brucella abortus. An immunosensor was designed based on blue-SiNPs and paramagnetic nanoparticles (PMNPs). The synthesized immunosensor was conjugated with a polyclonal antibody against B. abortus, which was activated by 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form detection and capture probes, respectively. After adding the conjugates to the bacterial suspension, sandwich structure of PMNPs B. abortus-blue-SiNPs was formed and then separated by a magnet. The blue dye was released from the silica structure and its absorbance was measured at 670 nm with a spectrophotometer. Under optimal conditions, results showed a wide dynamic range from 1.5 × 103 to 1.5 × 108 cfu mL-1 with a detection limit of 450 cfu mL-1. The specificity of the sensor was confirmed in comparison with 5 other bacteria. Also, during the 120-days period, the complex was stable. The results suggested that it can be used in real samples (R2 = .9865). This designed colorimetric immunoassay strategy can be used as an alternative, user-friendly and on-site tool for the rapid detection of Brucella spp. compared to other common methods with high sensitivity and specificity in a short time.
Collapse
Affiliation(s)
- Arash Shams
- a Department of Biology, Sanandaj Branch, Islamic Azad University , Sanandaj , Iran
| | | |
Collapse
|
21
|
Bio-barcode technology for detection of Staphylococcus aureus protein A based on gold and iron nanoparticles. Int J Biol Macromol 2019; 124:1256-1263. [DOI: 10.1016/j.ijbiomac.2018.11.123] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022]
|
22
|
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48:5717-5751. [DOI: 10.1039/c9cs00174c] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesis, bio-functionalization, and multifunctional activities of superparamagnetic-nanostructures have been extensively reviewed with a particular emphasis on their uses in a range of disease-specific biomarker detection and associated challenges.
Collapse
Affiliation(s)
- Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Department of Biochemistry & Molecular Biology
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| | - Muhammad Younus
- Department of Chemistry
- School of Physical Sciences
- Shahjalal University of Science & Technology
- Sylhet 3114
- Bangladesh
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- School of Mechanical and Mining Engineering
| | - Yoshio Bando
- International Center for Materials Nanoarchitechtonics (MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
- Institute of Molecular Plus
| | - Muhammad J. A. Shiddiky
- School of Environment and Sciences and Queensland Micro- and Nanotechnology Centre (QMMC)
- Griffith University
- QLD 4111
- Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- International Center for Materials Nanoarchitechtonics (MANA)
| |
Collapse
|
23
|
Reali S, Najib EY, Treuerné Balázs KE, Chern Hui Tan A, Váradi L, Hibbs DE, Groundwater PW. Novel diagnostics for point-of-care bacterial detection and identification. RSC Adv 2019; 9:21486-21497. [PMID: 35521339 PMCID: PMC9066158 DOI: 10.1039/c9ra03118a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/30/2019] [Indexed: 12/20/2022] Open
Abstract
In addition to limiting the effectiveness of antimicrobial agents, antimicrobial resistance (AMR) is a significant global health concern as it is responsible for significant mortality/morbidity and increased economic burdens on healthcare systems. Diagnostic tests have been suggested as a means of prolonging the effectiveness of current antimicrobials; culture and other conventional diagnostics are hindered in their practicality as they are time- and labour intensive to perform. Point-of-care (POC) testing is performed near where the patient is being treated and can provide timely results that allow evidence based clinical interventions to be made. This review aims to outline the chemical principles behind some novel and emerging diagnostic techniques which have the required speed, simplicity, effectiveness and low-cost for incorporation into POC devices which can be used to inform and optimize antimicrobial use. The WHO global action plan on antimicrobial resistance outlines the need for new diagnostic tools. Point-of-care testing for bacterial infections would enable clinically meaningful interventions using methods that are rapid, low-cost, easy-to-operate, and portable.![]()
Collapse
Affiliation(s)
- Savannah Reali
- The University of Sydney School of Pharmacy
- Camperdown Campus
- Sydney
- Australia
| | - Elias Y. Najib
- The University of Sydney School of Pharmacy
- Camperdown Campus
- Sydney
- Australia
| | | | | | | | - David E. Hibbs
- The University of Sydney School of Pharmacy
- Camperdown Campus
- Sydney
- Australia
| | | |
Collapse
|
24
|
Gao Z, Liu Y, Wang X, Wei X, Han J. DNA Mini-Barcoding: A Derived Barcoding Method for Herbal Molecular Identification. FRONTIERS IN PLANT SCIENCE 2019; 10:987. [PMID: 31555305 PMCID: PMC6724574 DOI: 10.3389/fpls.2019.00987] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/12/2019] [Indexed: 05/06/2023]
Abstract
In recent years, the demand for natural herbal products (NHP) has increased; however, the quality of these products is difficult to confirm due to the lack of a comprehensive quality control system. Traditional methods are not effective in detecting processed ingredients. DNA barcoding is an established technique that has been used for more than 10 years. This technique uses short standard sequences (generally 200-600 bp) to identify species. While a complete DNA barcode is difficult to obtain from NHP due to DNA degradation, mini-barcoding is a complementary tool to identify species in NHP. DNA mini-barcoding uses smaller DNA segments for polymerase chain reaction amplification and can be applied to identify species rapidly. The present review summarizes the development and application of DNA mini-barcodes over recent years and discusses the limitations of this technique. This review also compares mini-barcoding and meta-barcoding, a technique using universal polymerase chain reaction primers to simultaneously amplify multiple DNA barcodes and identify many species in a single environmental sample. Additionally, other detection methods that can be combined with mini-barcodes, such as nucleotide signatures, high-resolution DNA melting analysis, and gold nanoparticles, are discussed. DNA mini-barcoding can fill the gaps left by other methods in the field of herbal molecular identification.
Collapse
|
25
|
Ultrasensitive detection of T-2 toxin in food based on bio-barcode and rolling circle amplification. Anal Chim Acta 2018; 1043:98-106. [DOI: 10.1016/j.aca.2018.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
|
26
|
Liu YH, Deng HH, Li HN, Shi TF, Peng HP, Liu AL, Chen W, Hong GL. A DNA electrochemical biosensor based on homogeneous hybridization for the determination of Cryptococcus neoformans. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Hu P, Zhang S, Wu T, Ni D, Fan W, Zhu Y, Qian R, Shi J. Fe-Au Nanoparticle-Coupling for Ultrasensitive Detections of Circulating Tumor DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801690. [PMID: 29931715 DOI: 10.1002/adma.201801690] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/02/2018] [Indexed: 05/15/2023]
Abstract
Effectiveness of cancer therapy relies heavily on the efficient early diagnosis. Circulating tumor DNA (ctDNA) detection is one of the most clinically meaningful liquid biopsy approaches for the noninvasive cancer early diagnosis, which, unfortunately, cannot be applied as a routine diagnostic tool till a number of obstacles, for example, unsatisfactory specificity and sensitivity, and extremely high costs, are overcome. Here, the first paradigm of nanomaterial's application in the extremely specific, ultrasensitive, and yet economical ctDNA detections is reported based on a facile nanoparticle-coupling strategy without amplification, with which polymerase chain reaction (PCR)-introduced bias and other shortcomings are successfully circumvented. Aiming at seven Kirsten rat sarcoma-2 virus (KRAS) point mutations, the present strategy exhibits high specificity and an ultrahigh sensitivity of detecting as low as 0.1 pg mL-1 of KRAS point mutation without prior PCR amplification. Discriminating KRAS gene mutations in lung adenocarcinoma patients at an extremely low detection limit equivalent to 0.12% mutation relative to wild-type gene is successful. It is envisioned that this nanoparticle-coupling approach could be routinely applied clinically for ultra-early diagnosis and monitoring of diverse malignant tumors, thus facilitating the fight against cancer.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Shengjian Zhang
- Department of Radiology, Cancer Hospital/Institute and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Tong Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Wenpei Fan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yan Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Rong Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
28
|
Shahbazi R, Salouti M, Amini B, Jalilvand A, Naderlou E, Amini A, Shams A. Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Mol Cell Probes 2018; 41:8-13. [PMID: 30053513 DOI: 10.1016/j.mcp.2018.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/26/2023]
Abstract
Staphylococcus aureus is a gram-positive and opportunistic pathogen that is one of the most common causes of nosocomial infections; therefore, its rapid diagnosis is important and valuable. Today, the use of nanoparticles is expanding due to their unique properties. The purpose of the present study is the determination of S. aureus by a colorimetric method based on gold nanoparticles (AuNPs). Firstly, S. aureus was cultured on both LB media (broth and agar) and their chromosomal DNA was extracted. Afterwards, primers and biosensor were designed based on Protein A sequence data in the gene bank. PCR assay was performed under optimal conditions and the PCR product was electrophoresed on 2-percent agarose gel. The synthesized biosensors were conjugated with AuNPs and, eventually, a single-stranded genome was added to the conjugated AuNPs and hybridization was performed. The results were evaluated based on color change detected by the naked eye, optical spectrophotometry, and transient electron microscopy. Finally, the sensitivity and specificity of the AuNP-biosensor were determined. The results of the present study showed a 390 bp band on the agarose electrophoresis gel, which confirmed the presence of Protein A genes on the chromosome of the bacteria. The PCR and colorimetric methods were compared with each other. The sensitivity of the PCR and colorimetric methods were 30 ng μL-1 and 10 ng μL-1, respectively. The limit of detection (LOD) equaling 8.73 ng μL-1 was determined and the specificity of the method was confirmed by the DNA of other bacteria. According to the results, the present method is rapid and sensitive in detecting S. aureus.
Collapse
Affiliation(s)
- Reza Shahbazi
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mojtaba Salouti
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Bahram Amini
- Department of Biology, Faculty of Science, Zanjan University, Zanjan, Iran.
| | - Ahmad Jalilvand
- Assistant professor of Pathology, Department of Pathology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ebrahim Naderlou
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Ali Amini
- Department of Biology, Faculty of Science, Zanjan University, Zanjan, Iran
| | - Arash Shams
- Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
29
|
Amini B, Kamali M, Salouti M, Yaghmaei P. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:421-429. [PMID: 29649678 DOI: 10.1016/j.saa.2018.03.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50ngmL-1 with the limit detection of 9.899ngmL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108CFUmL-1 in real samples with a detection limit of 320CFUmL-1.
Collapse
Affiliation(s)
- Bahram Amini
- Department of Biology, Science and Research Branch (IAU), Islamic Azad University, Tehran, Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Salouti
- Department of Microbiology, Faculty of Sciences, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch (IAU), Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018; 184:537-556. [PMID: 29674080 DOI: 10.1016/j.talanta.2018.02.088] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology are as a result of the development of engineered nanoparticles. Efficiently, metallic nanoparticles have been widely exploited for biomedical application and among them, gold nanoparticles (AuNPs) are highly remarkable. Consequent upon their significant nature, spherical and gold nanorods (Au NRs) nanoparticles attract extreme attention. Their intrinsic features such as optical, electronic, physicochemical and, surface plasmon resonance (SPR); which can be altered by changing the characterizations of particles such as shape, size, aspect ratio, or environment; ease of synthesis and functionalization properties have resulted to various applications in different fields of biomedicine such as sensing, targeted drug delivery, imaging, photothermal and photodynamic therapy as well as the modulation of two or three applications. This article reviewed the popular AuNPs synthesis methods and mentioned their established applications in various demands, especially in biological sensing.
Collapse
Affiliation(s)
- Narges Elahi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Narmani A, Kamali M, Amini B, Kooshki H, Amini A, Hasani L. Highly sensitive and accurate detection of Vibrio cholera O1 OmpW gene by fluorescence DNA biosensor based on gold and magnetic nanoparticles. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|