1
|
Terzapulo X, Dyussupova A, Ilyas A, Boranova A, Shevchenko Y, Mergenbayeva S, Filchakova O, Gaipov A, Bukasov R. Detection of Cancer Biomarkers: Review of Methods and Applications Reported from Analytical Perspective. Crit Rev Anal Chem 2025:1-46. [PMID: 40367278 DOI: 10.1080/10408347.2025.2497868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
One in five deaths in developed countries is related to cancer. The cancer prevalence is likely to grow with aging population. The affordable and accurate early diagnostics of cancer based on detection of cancer biomarkers at low concentration during its early stages is one of the most efficient way to decrease mortality and human suffering from cancer. The data from 201 analytical papers are tabulated in 9 tables, illustrated in 8 figures and used for comparative analysis of methods applied for cancer biomarker detection, including polymerase chain reaction, Loop-mediated isothermal amplification (LAMP), mass spectrometry, enzyme-linked immunosorbent assay, electroanalytical methods, immunoassays, surface enhanced Raman scattering, Fourier Transform Infrared and others in terms of above-mentioned performance parameters. Median and/or average limit of detection (LOD) are calculated and compared between different analytical methods. We also described and compared LOD of the methods used for detection of three frequently detected cancer biomarkers: carcinoembryonic antigen, prostate-specific antigen and alpha-fetoprotein. Among those methods of detection, the reported electrochemical sensors often demonstrate relatively high sensitivity/low LOD while they often have a moderate instrumental cost and fast time to results. The review tabulates, compares and discusses analytical papers, which report LOD of cancer biomarkers and comprehensive quantitative comparison of various analytical methods is made. The discussion of those techniques applied for cancer biomarker detection included brief summary of pro and cons for each of those methods.
Collapse
Affiliation(s)
- Xeniya Terzapulo
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Dyussupova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Boranova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Yegor Shevchenko
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Saule Mergenbayeva
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana, Republic of Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
2
|
He H, Zhang X, Deng M, Zhou Y, Pang H, Yang H, Lyu J, Feng Y, Geng X, Guo X, Luo G, Guo B. In-situ nucleic acid amplification induced by DNA self-assembly for rapid and ultrasensitive detection of miRNA. Anal Chim Acta 2025; 1335:343457. [PMID: 39643311 DOI: 10.1016/j.aca.2024.343457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND To improve the sensitivity and specificity of nucleic acid detection, coupling two or more signal amplification systems is a feasible pattern, such as nucleic acid isothermal amplification coupling genome-editing technology, and cascaded DNA self-assembly circuits. And representative signal amplification strategies include loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats/associated proteins (CRISPR/Cas) systems, and catalyzed hairpin assembly (CHA). However, these detection strategies often require the enrichment of intermediate products, the replacement of reaction conditions and the design of multiple probes, which may seriously affect the reliability of detection results. RESULTS Herein, we propose a novel nucleic acid detection system which is named as catalyzed hairpin assembly (CHA) coupled with embedded primer triggered isothermal amplification (CEA for short). DNA self-assembly probes in CEA contain a specially designed primer. When target nucleic acid (e.g., miRNA) initiates CHA reaction (the first signal amplification), the self-assembly product of CHA will expose a primer (named as embedded primer). The embedded primer will trigger a special nucleic acid isothermal amplification in situ, then generate plenty of double-stranded DNA products in 30 min with varying lengths (the second signal amplification). Compared to that of a typical CHA reaction, the sensitivity of CEA has increased by three orders of magnitude and the detection limit is as low as 0.228 fM. Besides, it has excellent detection performance in cancer and stem cell samples. SIGNIFICANCE By coupling embedded primer with DNA self-assembly system, a new nucleic acid detection system (CEA) with one-step operation and dual signal amplification has been successfully established. Compared with traditional dual signal amplification systems, CEA can not only significantly improve the reaction efficiency, but also greatly reduce the difficulty of detection system design and experimental operation.
Collapse
Affiliation(s)
- Hongfei He
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China.
| | - Xuewen Zhang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Meng Deng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yan Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hongwei Pang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Hui Yang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Jiazhen Lyu
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Yuxin Feng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiangqin Geng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Guangcheng Luo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| | - Bin Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
3
|
Sun F, Liu J, Su Z, Wu D, Qu S, Wu Y, Li L, Li G. Encodable DNA Hairpin Probes for Nanopore Multiplexed Target Detection. Anal Chem 2024; 96:17612-17619. [PMID: 39431921 DOI: 10.1021/acs.analchem.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the co-occurrence of hazardous compounds, it is crucial to build multiple highly discriminative probe libraries for simultaneous determination. Drawing inspiration from nucleic acid barcodes, we developed a probe system that is exclusively based on the nucleic acid secondary structure's hairpin structure, which can be directly read by nanopores. The highly distinguishable hairpin probes were constructed, and a detailed explanation of the possible patterns in their design was provided. These probe-representative events measured through the α-hemolysin (α-HL) nanopores were both distinguished, either through visual observation or comparison of the nanopore parameters. Besides, the potential design pattern for probes with unique telegraphic switching between the two levels was also unveiled. Finally, these probes were utilized to realize simultaneous, ultrasensitive mycotoxin multiple-detection, and their prospective applications for the detection of proteins and microRNAs were presented, indicating their suitability for a wide range of sensing applications.
Collapse
Affiliation(s)
- Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Jinde Liu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Zhu L, Zhang X, Yang L, Qiu S, Liu G, Xiong X, Xiao T, Huang K, Zhu L. Label-free electrochemical sensing platform for sensitive detection of ampicillin by combining nucleic acid isothermal enzyme-free amplification circuits with CRISPR/Cas12a. Talanta 2024; 273:125950. [PMID: 38521024 DOI: 10.1016/j.talanta.2024.125950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The residue of ampicillin (AMP) in food and ecological environment poses a potential harm to human health. Therefore, a reliable system for detecting AMP is in great demand. Herein, a label-free and sensitive electrochemical sensor utilizing NH2-Co-MOF as an electrocatalytic active material for methylene blue (MB) was developed for rapid and facile AMP detection by combining hybridization chain reaction (HCR), catalytic hairpin assembly (CHA) with CRISPR/Cas12a. The surface of glassy carbon electrode modified with NH2-Co-MOF was able to undergo HCR independent of the AMP, forming long dsDNA complexes to load MB, resulting in strong original electrochemical signal. The presence of AMP could trigger upstream CHA circuit to activate the CRISPR/Cas12a system, thereby achieving rapid non-specific cleavage of the trigger ssDNA of HCR on the electrode surface, hindering the occurrence of HCR and reducing the load of MB. Significant signal change triggered by the target was ultimately obtained, thus achieving sensitive detection of the AMP with a detection limit as low as 1.60 pM (S/N = 3). The proposed sensor exhibited good stability, selectivity, and stability, and achieved reliable detection of AMP in milk and livestock wastewater samples, demonstrating its promising application prospects in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Li Zhu
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China
| | - Xuemei Zhang
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China
| | - Li Yang
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China
| | - Shan Qiu
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China
| | - Guoyu Liu
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China
| | - Xiaoli Xiong
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China
| | - Ting Xiao
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China
| | - Ke Huang
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China.
| | - Liping Zhu
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling Sichuan Normal University, Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources Ministry of Education, Sichuan Normal University, College of Chemistry and Materials Science, Chengdu, 610066, China.
| |
Collapse
|
5
|
Zhang X, Li Y, Wang Q, Jiang C, Shan Y, Liu Y, Ma C, Guo Q, Shi C. Three-way junction structure-mediated reverse transcription-free exponential amplification reaction for pathogen RNA detection. Anal Bioanal Chem 2024; 416:3161-3171. [PMID: 38558309 DOI: 10.1007/s00216-024-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Since RNA is an important biomarker of many infectious pathogens, RNA detection of pathogenic organisms is crucial for disease diagnosis and environmental and food safety. By simulating the base mismatch during DNA replication, this study presents a novel three-way junction structure-mediated reverse transcription-free exponential amplification reaction (3WJ-RTF-EXPAR) for the rapid and sensitive detection of pathogen RNA. The target RNA served as a switch to initiate the reaction by forming a three-way junction (3WJ) structure with the ex-trigger strand and the ex-primer strand. The generated trigger strand could be significantly amplified through EXPAR to open the stem-loop structure of the molecular beacon to emit fluorescence signal. The proofreading activity of Vent DNA polymerase, in combination with the unique structure of 2+1 bases at the 3'-end of the ex-primer strand, could enhance the role of target RNA as a reaction switch to reduce non-specific amplification and ensure excellent specificity to differentiate target pathogen from those causing similar symptoms. Furthermore, detection of target RNA showed a detection limit of 1.0×104 copies/mL, while the time consumption was only 20 min, outperforming qRT-LAMP and qRT-PCR, the most commonly used RNA detection methods in clinical practice. All those indicates the great application prospects of this method in clinical diagnostic.
Collapse
Affiliation(s)
- Xinguang Zhang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qing Wang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Chao Jiang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yuting Shan
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yao Liu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao University of Science and Technology, QingdaoQingdao, 266042, China
| | - Qunqun Guo
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China.
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China.
- Qingdao JianMa Gene Technology Co., Ltd, Qingdao, 266114, People's Republic of China.
| |
Collapse
|
6
|
Huang Y, Zhao Z, Yi G, Zhang M. Importance of DNA nanotechnology for DNA methyltransferases in biosensing assays. J Mater Chem B 2024; 12:4063-4079. [PMID: 38572575 DOI: 10.1039/d3tb02947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| | - Zixin Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| |
Collapse
|
7
|
Chen X, Xuan C, Lin J, Pan Z, Wu X, Wu P, Liang Z, Yu L, Qiu C. One-tube B7-H3 detection based on isothermal exponential amplification and dendritic hybridization chain reaction. NANOSCALE ADVANCES 2024; 6:2129-2135. [PMID: 38633035 PMCID: PMC11019487 DOI: 10.1039/d3na01025b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
We have developed a one-tube fluorescence strategy for the detection of B7-H3 based on a proximity hybridization-mediated protein-to-DNA signal transducer, isothermal exponential amplification (EXPAR), and dendritic hybridization chain reaction (D-HCR). In this assay, a protein signal transducer was employed to convert the input protein to output single-stranded DNA with a nicking site. Antibody-conjugated DNA1 was first hybridized with the output DNA (DNA3). The binding of antibodies conjugated DNA1 and DNA2 to the same protein was able to increase the local concentrations, resulting in strand displacement between DNA3 and DNA2. DNA3 with a nicking endonuclease recognition sequence at the 5' end then hybridized with hairpin probe 1 to mediate EXPAR in the presence of nicking endonuclease and DNA polymerase. A large number of single-strand DNA were produced in the circle of nicking, polymerization, and strand displacement. The resulting ssDNA products were further amplified by D-HCR to produce many large-molecular concatemers. The resulting DNA products can be monitored in real-time fluorescence signaling. Our proposed assay can realize one-tube detection due to the same reaction temperature of the protein-to-DNA signal transducer, EXPAR, and DHCR. This assay has a linear range from 100 fg mL-1 to 1 μg mL-1 with a detection limit down to 100 fg mL-1. This work shows a good performance in clinical specimen detection.
Collapse
Affiliation(s)
| | - Chun Xuan
- Dalang Hospital of Dongguan Dongguan 523770 China
| | - Jingtao Lin
- Dalang Hospital of Dongguan Dongguan 523770 China
| | | | - Xiaoliang Wu
- Dalang Hospital of Dongguan Dongguan 523770 China
| | - Pin Wu
- Dalang Hospital of Dongguan Dongguan 523770 China
| | - Zhenchang Liang
- Zhongshan City Shiqisuhuazan Hospital Zhongshan, 528400 China
| | - Luxin Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University Dongguan 523808 China
| | - Cailing Qiu
- Dalang Hospital of Dongguan Dongguan 523770 China
| |
Collapse
|
8
|
Liu H, Ren N, Gao Y, Wu T, Sui B, Liu Z, Chang B, Huang M, Liu H. Sensitive detection of microRNA by dynamic light scattering based on DNAzyme walker-mediated AuNPs self-assembly. Dalton Trans 2023; 52:17340-17348. [PMID: 37937720 DOI: 10.1039/d3dt02450d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
As an important biomarker, microRNAs (miRNAs) play an important role in gene expression, and their detection has attracted increasing attention. In this study, a DNAzyme walker that could provide power to perform autonomous movement was designed. Based on the continuous mechanical motion characteristics of DNAzyme walker, a miRNA detection strategy for the self-assembly of AuNPs induced by the hairpin probe-guided DNAzyme walker "enzyme cleavage and walk" was established. In this strategy, DNAzyme walker continuously cleaved and walked on the hairpin probe on the surface of AuNPs to induce the continuous shedding of some segments of the hairpin probe. The remaining hairpin sequences on the surface of the AuNP pair with each other, causing the nanoparticles to self-assemble. This strategy uses the autonomous movement mechanism of DNAzyme walker to improve reaction efficiency and avoid the problem of using expensive and easily degradable proteases. Secondly, using dynamic light scattering technology as the signal output system, ultra-sensitive detection with a detection limit of 3.6 fM is achieved. In addition, this strategy has been successfully used to analyze target miRNAs in cancer cell samples.
Collapse
Affiliation(s)
- Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Yi Gao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Tingfan Wu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Boren Sui
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Bin Chang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Man Huang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, P.R. China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| |
Collapse
|
9
|
Ang YS, Yung LYL. Design strategies for countering the effect of fluorophore-quencher labelling on DNA hairpin thermodynamics. Chem Commun (Camb) 2023; 59:13167-13170. [PMID: 37849331 DOI: 10.1039/d3cc02427j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
We report the impact of fluorophore-quencher labelling on the thermodynamics of hairpin opening by testing five fluorophores and two quenchers labelled at the end and/or internal positions. Two counter strategies were introduced, i.e. label the hairpin probe at an internal position or append an external hairpin stem on the trigger strand to promote coaxial stacking hybridization. The observations remained valid for complex hairpin opening operations such as hybridization chain reaction.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
10
|
Xu Y, Chen J, Sui X, Zhang Y, Zhang A, Lin Z, Liu X, Chen J. Ultra-sensitive electrochemiluminescent biosensor for miRNA based on CRISPR/Cas13a trans-cleavage-triggered hybridization chain reaction and magnetic-assisted enrichment. Mikrochim Acta 2023; 190:393. [PMID: 37712989 DOI: 10.1007/s00604-023-05962-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The great selectivity and trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a had been coupled with high amplification efficiency of hybridization chain reaction (HCR) and magnetic-assisted enrichment, high sensitivity of electrochemiluminescence (ECL) detection to develop an ultra-sensitive biosensor for microRNA-21 (miRNA-21). The CRISPR/Cas13a was used to recognize target RNA with high specificity and performed the trans-cleavage activity. An initiation strand was generated to bind to the probe on the surface of nanomagnetic beads and then trigged HCR to produce long double-strand DNAs (dsDNAs) to realize signal amplification. Ru(phen)32+ can be inserted in the groove of the dsDNAs and acts as the ECL indicator, which can be separated through magnetic enrichment and allowed the platform to reduce the signal background. Under the optimized conditions, there is a good linear correlation between the ECL intensity and the logarithm of miRNA-21 concentration in the range 1 fM-10 nM; the limit of detection (LOD) was 0.53 fM. The proposed system was applied to detect miRNA-21 from the urine of acute kidney injury (AKI) patients with good results.
Collapse
Affiliation(s)
- Yunpeng Xu
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Jiahui Chen
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Xiaolu Sui
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yanzi Zhang
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Aisha Zhang
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analysis Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350116, People's Republic of China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China.
| | - Jihong Chen
- Department of Nephrology, People's Hospital of Bao'an District, Shenzhen, Guangdong, 518000, People's Republic of China.
- Bao'an Shenzhen Clinical Medical School of Guangdong Medical University, Shenzhen, Guangdong, 518000, People's Republic of China.
| |
Collapse
|
11
|
Tian R, Zhao W, Li H, Liu S, Yu R. Biosensor model based on single hairpin structure for highly sensitive detection of multiple targets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4220-4225. [PMID: 37609764 DOI: 10.1039/d3ay01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nowadays, due to the genetic information carried by nucleic acids, they can serve as a biomarker for the early diagnosis of diseases, including tumors and cardiovascular disease, among others, making genetic testing a hotspot of biomedicine. Therefore, we have designed a universal fluorescence biosensor that can detect multiple DNA sequences with good performance. In our designed biosensor, λ exonuclease is used due to its ability to digest double-stranded DNA from the phosphorylated 5'- end and promote the targeted cycle. The exonuclease is introduced into a DNA hairpin containing a target recognition sequence. Hence, with the target, λ exonuclease-assisted targeted recycling can be activated. The hydrolyzed DNA hairpin triggers a strand displacement reaction between the hairpin probe (H1) and F-Q double DNA strand (F-Q), increasing the distance between the fluorescent chain (F) and quenching chain (Q); thus the fluorescence signal is emitted. It is exciting that the detection limit of the biosensor is 300 fM, which is relatively low, and there is an excellent linear relationship between fluorescence intensity and target concentration. Moreover, the biosensor we designed has universal applicability in the detection of other genes, and the range of RSD is 1.28-2.45%. Hence, it has good application prospects and practical value in the early detection of some diseases and the design of fluorescent biosensors.
Collapse
Affiliation(s)
- Ruiting Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Weihua Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Shiwen Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang 330029, P. R. China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
12
|
Wei Q, Huang H, Wang S, Liu F, Xu J, Luo Z. A Novel Fluorescent Aptamer Sensor with DNAzyme Signal Amplification for the Detection of CEA in Blood. SENSORS (BASEL, SWITZERLAND) 2023; 23:1317. [PMID: 36772357 PMCID: PMC9920513 DOI: 10.3390/s23031317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Carcinoembryonic antigen (CEA) is a tumor-specific biomarker; however, its low levels in the early stages of cancer make it difficult to detect. To address the need for analysis of ultra-low-level substances, we designed and synthesized a fluorescent aptamer sensor with DNAzyme signal amplification and used it for the detection of CEA in blood. In the presence of the target protein, the aptamer sequence in the recognition probe binds to the target protein and opens the hairpin structure, hybridizes with the primer and triggers a polymerization reaction in the presence of polymerase to generate double-stranded DNA with two restriction endonuclease Nb.BbvCl cleavage sites. At the same time, the target protein is displaced and continues to bind to another recognition probe, triggering a new round of polymerization reaction, forming a cyclic signal amplification triggered by the target. The experimental results show that the blood detection with CEA has a high sensitivity and a wide detection range. The detection range: 10 fg/mL~10 ng/mL, with a detection limit of 5.2 fg/mL. In addition, the sensor can be used for the analysis of complex biological samples such as blood.
Collapse
Affiliation(s)
- Qingmin Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Huakui Huang
- Yulin Campus, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Fa Liu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Jiayao Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Zhihui Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| |
Collapse
|
13
|
Abula A, Yang T, Zhang Y, Li T, Ji X. Enhancement of Escherichia coli Ribonuclease R Cytosine-Sensitive Activity by Single Amino Acid Substitution. Mol Biotechnol 2023; 65:108-115. [PMID: 35838865 DOI: 10.1007/s12033-022-00533-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Exoribonucleases are frequently used as nuclei acids detection tools for their sequences, modifications, and structures. Escherichia coli ribonuclease R (EcR) is the prototypical exoribonuclease of the RNase II/RNB family degrading RNA in the 3'-5' direction. Different from RNase II, EcR is capable of degrading structured RNA efficiently, which makes it a potential analysis tool for various RNA species. In this work, we examined the nuclease activity of EcR degrading a series of RNA substrates with various sequences. Our biochemical work reveals that EcR is significantly sensitive to cytosine compared with other bases when catalyzing RNA degradation. EcR shows higher cytosine sensitivity compared to its homolog RNase II when degrading RNAs, and the hydrolysis process of EcR is transiently halted and produces apparent intermediate product when the 1-nt upstream of C is A or U, or G. Furthermore, the substitution of glycine with proline (G273P) in EcR enhances its cytosine sensitivity. These findings expand our understanding of EcR enzymatic activities. The EcR G273P mutant bearing higher cytosine sensitivity could help enrich cytosine trails in RNAs and will have potential implications in the detection and analysis of various RNA species especially small RNAs in biological and clinical samples.
Collapse
Affiliation(s)
- Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.,School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Yingxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China. .,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China. .,Ministry of Education, Engineering Research Center of Protein and Peptide Medicine, Nanjing, China.
| |
Collapse
|
14
|
Ang YS, Qiu X, Yam HM, Wu N, Lanry Yung LY. Enzyme-free and isothermal discrimination of microRNA point mutations using a DNA split proximity circuit with turn-on fluorescence readout. Biosens Bioelectron 2022; 217:114727. [DOI: 10.1016/j.bios.2022.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
|
15
|
Liang Z, Huang X, Tong Y, Lin X, Chen Z. Engineering an endonuclease-assisted rolling circle amplification synergistically catalyzing hairpin assembly mediated fluorescence platform for miR-21 detection. Talanta 2022; 247:123568. [DOI: 10.1016/j.talanta.2022.123568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
|
16
|
Bellassai N, D'Agata R, Spoto G. Isothermal circular strand displacement-based assay for microRNA detection in liquid biopsy. Anal Bioanal Chem 2022; 414:6431-6440. [PMID: 35879425 PMCID: PMC9411226 DOI: 10.1007/s00216-022-04228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Extracellular miRNAs are promising targets for developing new assays for the early diagnosis and prognosis of diseases based on liquid biopsy. The detection of miRNAs in liquid biopsies is challenged by their short sequence length, low concentration, and interferences with bodily fluid components. Isothermal circular strand displacement polymerization has emerged as a convenient method for nucleic acid amplification and detection. Herein, we describe an innovative strategy for microRNA detection directly from biological fluids based on hairpin probe-assisted isothermal amplification reaction. We designed and optimized the assay to detect target analytes in 1 µL of the complex media's biological matrix using a microfluidic device for the straightforward analysis of multiple samples. We validated the assay to detect circulating miR-127-5p in synovial fluid, recently indicated as a predictive biomarker for osteoarthritis disease. The combined use of a mutant polymerase operating with high yield and a primer incorporating locked nucleic acid nucleosides allowed detection of miR-127-5p with 34 fmol L-1 LOD. We quantified circulating miR-127-5p directly in synovial fluid, thus demonstrating that the assay may be employed for the convenient detection of 4.3 ± 0.5 pmol L-1 concentrated miRNAs in liquid biopsy samples.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture E Biosistemi", c/o Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
17
|
Islam MM, Koirala D. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Anal Chim Acta 2022; 1209:339338. [PMID: 35569864 PMCID: PMC8633689 DOI: 10.1016/j.aca.2021.339338] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 01/09/2023]
Abstract
As the COVID-19 pandemic continues to affect human health across the globe rapid, simple, point-of-care (POC) diagnosis of infectious viruses such as SARS-CoV-2 remains challenging. Polymerase chain reaction (PCR)-based diagnosis has risen to meet these demands and despite its high-throughput and accuracy, it has failed to gain traction in the rapid, low-cost, point-of-test settings. In contrast, different emerging isothermal amplification-based detection methods show promise in the rapid point-of-test market. In this comprehensive study of the literature, several promising isothermal amplification methods for the detection of SARS-CoV-2 are critically reviewed that can also be applied to other infectious viruses detection. Starting with a brief discussion on the SARS-CoV-2 structure, its genomic features, and the epidemiology of the current pandemic, this review focuses on different emerging isothermal methods and their advancement. The potential of isothermal amplification combined with the revolutionary CRISPR/Cas system for a more powerful detection tool is also critically reviewed. Additionally, the commercial success of several isothermal methods in the pandemic are highlighted. Different variants of SARS-CoV-2 and their implication on isothermal amplifications are also discussed. Furthermore, three most crucial aspects in achieving a simple, fast, and multiplexable platform are addressed.
Collapse
|
18
|
Bodulev OL, Sakharov IY. Modern Methods for Assessment of microRNAs. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:425-442. [PMID: 35790375 DOI: 10.1134/s0006297922050042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The review discusses modern methods for the quantitative and semi-quantitative analysis of miRNAs, which are small non-coding RNAs affecting numerous biological processes such as development, differentiation, metabolism, and immune response. miRNAs are considered as promising biomarkers in the diagnosis of various diseases.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| |
Collapse
|
19
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
20
|
Fang C, Yang Y, Zou S, Ouyang P, Qing Y, Han J, Li H, Wang Z, Du J. Signal-On Fluorescence Biosensor for Highly Sensitive Detection of miRNA-21 Based on DNAzyme Assisted Double-Hairpin Molecular Beacon. BIOSENSORS 2022; 12:bios12050276. [PMID: 35624579 PMCID: PMC9139022 DOI: 10.3390/bios12050276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Although miRNAs exist in small quantities in the human body, they are closely related to the abnormal expression of genes in diseases such as tumors. Therefore, sensitive detection of miRNAs is very important for the prevention and treatment of various tumors and major diseases. The purpose of this study is to develop a label-free sensing strategy based on the co-action of double-hairpin molecular beacons and deoxyribozymes (DNAzymes) for highly sensitive detection of miRNA-21. The target miRNA-21 promotes the assembly of DNAzyme with a complete catalytic core region. At the presence of Mg2+, DNAzyme cuts a substrate into short chains, which open the double hairpin molecular beacon, and then form G-quadruplexs at both ends, specifically binding more ThT to generate a amplified fluorescent signal. The cut substrate will be replaced by the uncut ones in the next stage, increasing the concentration of reactants, and thus further improving the fluorescence intensity. This DNAzyme assisted double hairpin molecular beacon has a certain degree of discrimination for substances with single base mismatches, and the detection limit of miRNA-21 is 0.13 pM, lower than that of the many other analysis. Further, this detection has good selectivity and sensitivity in serum. Therefore, this strategy provides a simple, fast and low-cost platform for the sensitive detection of miRNA-21, having potential applications in early cancer diagnosis.
Collapse
|
21
|
Cao S, Tang X, Chen T, Chen G. Types and Applications of Nicking Enzyme-Combined Isothermal Amplification. Int J Mol Sci 2022; 23:ijms23094620. [PMID: 35563012 PMCID: PMC9100243 DOI: 10.3390/ijms23094620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the sudden outbreak of COVID-19 at the end of 2019, rapid detection has become an urgent need for community clinics and hospitals. The rapid development of isothermal amplification detection technology for nucleic acids in the field of molecular diagnostic point-of-care testing (POCT) has gained a great deal of attention in recent years. Thanks to intensive research on nicking enzymes, nicking enzyme-combined isothermal amplification has become a promising platform for rapid detection. This is a novel technique that uses nicking enzymes to improve ordinary isothermal amplification. It has garnered significant interest as it overcomes the complexity of traditional molecular diagnostics and is not subject to temperature limitations, relying on cleavage enzymes to efficiently amplify targets in a very short time to provide a high level of amplification efficiency. In recent years, several types of nicking enzyme-combined isothermal amplification have been developed and they have shown great potential in molecular diagnosis, immunodiagnosis, biochemical identification, and other fields. However, this kind of amplification has some disadvantages. In this review, the principles, advantages and disadvantages, and applications of several nicking enzyme-combined isothermal amplification techniques are reviewed and the prospects for the development of these techniques are also considered.
Collapse
Affiliation(s)
- Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Correspondence: (T.C.); (G.C.)
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.C.); (G.C.)
| |
Collapse
|
22
|
Wang J, Sun J, Zhang J, Shen C, Zhang X, Xu J. Engineered G-Quadruplex-Embedded Self-Quenching Probes Regulate Single Probe-Based Multiplex Isothermal Amplification to Light Road Lamp Probes for Sensitized Determination of microRNAs. Anal Chem 2022; 94:4437-4445. [PMID: 35234452 DOI: 10.1021/acs.analchem.1c05402] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of oligonucleotide probe-based isothermal amplification with the ability to identify miRNA biomarkers is crucial for molecular diagnostics. In this work, we engineered a miRNA-21-responsive G-quadruplex-embedded self-quenching probe (GE-SQP) that can regulate single probe-based multiplex amplifications. The free GE-SQP is tightly locked in a quenching state with no active G-quadruplexes. Introduction of target miRNA to hybridize with GE-SQP would induce a multiplex isothermal amplification to significantly build a lot of one-bulb-contained road lamp probe (OC-RLP) and two-bulb-contained road lamp probe (TC-RLP) using G-quadruplex as the lamp bulb. When lightened by thioflavin T (ThT), beams of fluorescence were emitted to show the presented miRNA-21. Specially, the whole amplification is only a one probe-involved one-step reaction without any wasted species. The mix-to-detection and all-in amplification behavior allows the sensing system a maximally maintained operation simplicity and high assay performance. In such a way, the detection range of miRNA-21 is from 1 fM to 1 nM with a limit of detection of 0.86 fM. The practicability was demonstrated by determining miRNA-21 from serum samples with acceptable results. We expect that this method can open a new avenue for exploring advanced biosensors with improved analytical performances.
Collapse
Affiliation(s)
- Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Jiayin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Jing Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Chenlin Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Xinlei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
23
|
Liu S, Huo Y, Fan L, Ning B, Sun T, Gao Z. Rapid and ultrasensitive detection of DNA and microRNA-21 using a zirconium porphyrin metal-organic framework-based switch fluorescence biosensor. Anal Chim Acta 2022; 1192:339340. [PMID: 35057960 DOI: 10.1016/j.aca.2021.339340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023]
Abstract
Sensitive and accurate detection of nucleic acid biomarkers is critical for early cancer diagnosis, disease monitoring, and clinical treatment. In this study, we developed a switch fluorescence biosensor for simple and high-efficient detection of nucleic acid biomarkers using 6-carboxyfluorescein (FAM)-modified single-stranded DNA (ssDNA) probes (FAM-P1/P2), and zirconium porphyrin metal-organic framework nanoparticles (ZrMOF) acted as fluorescence quencher. FAM-P1/P2 probes were adsorbed on ZrMOF surface because of π-π stacking, hydrogen bonding, and electrostatic interactions. Fluorescence quenching event occurred by fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) processes, thereby achieving the "off" fluorescence status. Once the specific binding was formed between the fluorescence probes and the targets, the rigid double-stranded DNA (dsDNA) structures were released from ZrMOF surface, resulting in the recovery of fluorescence and the "on" status. Because of the superior adsorption ability of ZrMOF toward ssDNA than dsDNA, the switch of fluorescence signals from "off" to "on" allowed rapid and ultrasensitive detection of ssDNA (T1) and microRNA-21 (miR-21) within 30 min. The limit of detection (signal-to-noise ratio = 3) for T1 and miR-21 were 2 fM and 11 aM, respectively. Moreover, the proposed strategy was very simple as it worked by the facile adsorption-quenching-recovery mechanism without difficult and complicated immobilization processes. Also, this biosensor showed an excellent analytical performance in the detection of miR-21 in human serum samples. Therefore, this biosensor might be considered a potential tool for the detection of DNA and miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yapeng Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
24
|
Hu XY, Song Z, Yang ZW, Li JJ, Liu J, Wang HS. Cancer drug resistance related microRNAs: recent advances in detection methods. Analyst 2022; 147:2615-2632. [DOI: 10.1039/d2an00171c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MiRNAs are related to cancer drug resistance through various mechanisms. The advanced detection methods for the miRNAs are reviewed.
Collapse
Affiliation(s)
- Xin-Yuan Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Wei Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Jia-Jing Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
25
|
He S, Li P, Tang L, Chen M, Yang Y, Zeng Z, Xiong W, Wu X, Huang J. Dual-stage amplified fluorescent DNA sensor based on polymerase-Mediated strand displacement reactions. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Liu Q, Liu M, Jin Y, Li B. Rapid and enzyme-free signal amplification for fluorescent detection of microRNA via localized catalytic hairpin assembly on gold nanoparticles. Talanta 2021; 242:123142. [DOI: 10.1016/j.talanta.2021.123142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
|
27
|
Khandan-Nasab N, Askarian S, Mohammadinejad A, Aghaee-Bakhtiari SH, Mohajeri T, Kazemi Oskuee R. Biosensors, microfluidics systems and lateral flow assays for circulating microRNA detection: A review. Anal Biochem 2021; 633:114406. [PMID: 34619101 DOI: 10.1016/j.ab.2021.114406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short RNA sequences found in eukaryotic cells and they are involved in several diseases pathogenesis including different types of cancers, metabolic and cardiovascular disorders. Thus, miRNAs circulating in serum, plasma, and other body fluids are employed as biomarkers for diagnostic and prognostic purposes and in assessment of drug response. Thus, various methods have been developed for detection of miRNAs including northern blotting, reverse transcriptase polymerase chain reaction (RT-PCR), next-generation sequencing, microarray, and isothermal amplification that are recognized as traditional methods. Considering the importance of early diagnosis and treatment of miRNAs-related diseases, development of simple, one-step, sensitive methods is of great interest. Nowadays developing technologies including lateral flow assay, biosensors (optical and electrochemical) and microfluidic systems which are simple fast responding, user-friendly, and are enabled with visible detection have gained considerable attention. This review briefly discusses miRNAs detection' methods, with a particular focus on lateral flow assay, biosensors, and microfluidic systems as novel and practical procedures.
Collapse
Affiliation(s)
- Niloofar Khandan-Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Taraneh Mohajeri
- Department of Obstetrics & Gynecology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
29
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
30
|
Kim HY, Song J, Park HG. Ultrasensitive isothermal method to detect microRNA based on target-induced chain amplification reaction. Biosens Bioelectron 2021; 178:113048. [PMID: 33550160 DOI: 10.1016/j.bios.2021.113048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
We herein describe an ultrasensitive isothermal method to detect microRNA (miRNA) by utilizing target-induced chain amplification reaction (CAR). The hairpin probe (HP) employed in this strategy is designed to be opened upon binding to target miRNA. The exponential amplification reaction (EXPAR) template (ET) then binds to the exposed stem of HP and DNA polymerase (DP) promotes the extension reactions for both HP and ET, consequently producing intermediate double-stranded DNA product (IP) and concomitantly recycling target miRNA to open another intact HP. The IPs would produce a large number of target-mimicking probes (TMPs) and trigger probes (TPs) through the continuously repeated nicking and extension reactions at the two separated nicking sites within the IP. TMP triggers another CAR cycle by binding to intact HP as target miRNA did while TP promotes conventional EXPAR by independently binding to free ET. As a consequence of these interconnected reaction systems, a large number of final double-stranded DNA products (FPs) are produced, which can be monitored by measuring the fluorescent signal produced from duplex-specific fluorescent dye. Based on this unique design principle, the target miRNA was successfully determined down to even a single copy with high selectivity against non-specific miRNAs. The practical applicability of this method was also verified by reliably detecting target miRNA included in the total RNA extracted from the human cancer cell.
Collapse
Affiliation(s)
- Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
31
|
Yuan L, Fu Q, Zhou M, Ma Y, Zang L, Qin Y, Ji D, Zhang F. Highly sensitive and selective detection of PCB 77 using an aptamer-catalytic hairpin assembly in an aquatic environment. RSC Adv 2021; 11:5506-5511. [PMID: 35423071 PMCID: PMC8694717 DOI: 10.1039/d0ra10285g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are synthetic organic compounds that are extremely difficult to break down in water and can accumulate in human fat and organisms. However, methods that can be used to detect large amounts of PCBs remain unsatisfactory, as they are generally overly sensitive and involve complex operations. An aptamer-based catalytic hairpin assembly (aptamer-CHA) reaction for the selective detection of 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) was developed. It combines the advantages of aptamers and signal amplification reactions. The aptamer selectivity recognizes the target, PCB 77, which triggers the sensitive CHA reaction to produce a fluorescence signal. CHA is a sensitive enzyme-free signal amplification method suitable for on-site detection. Therefore, the identification aptamer is the basis for the quantitative detection of PCB 77, with a detection range of 0.01 μg L−1 to 500 μg L−1 and a detection limit of 0.01 μg L−1. In this study, the aptamer was used to improve the selectivity of the reaction, and the CHA reaction improved the sensitivity of the detection system. Such high-sensitivity PCB detection capabilities with simplified procedures may be useful for real-time field detection and other monitoring tasks. This method can be used as a rapid fluorescence detection strategy for other targets in aquatic environments. The fluorescence sensing strategy was used to detect PCB77 based on the aptamer-complex and catalytic hairpin assembly.![]()
Collapse
Affiliation(s)
- Lin Yuan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan Shandong P. R. China 250353 +86 053189631680
| | - Qiang Fu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan Shandong P. R. China 250353 +86 053189631680
| | - Maojuan Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan Shandong P. R. China 250353 +86 053189631680
| | - Yunqian Ma
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan Shandong P. R. China 250353 +86 053189631680
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan Shandong P. R. China 250353 +86 053189631680
| | - Yingjian Qin
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan Shandong P. R. China 250353 +86 053189631680
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science) Jinan Shandong P. R. China 250353 +86 053189631680
| | | |
Collapse
|
32
|
Zhu L, Zhang M, Ye J, Yan M, Zhu Q, Huang J, Yang X. Ratiometric Electrochemiluminescent/Electrochemical Strategy for Sensitive Detection of MicroRNA Based on Duplex-Specific Nuclease and Multilayer Circuit of Catalytic Hairpin Assembly. Anal Chem 2020; 92:8614-8622. [PMID: 32452205 DOI: 10.1021/acs.analchem.0c01949] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we proposed a ratiometric electrochemiluminescent (ECL)/electrochemical (EC) biosensor based on duplex-specific nuclease (DSN)-assisted target recycling and multilayer catalytic hairpin assembly (CHA) amplification cascades for the detection of microRNA (miRNA). The DSN-assisted target recycling transformed miRNAs into a large number of ssDNA, which then catalyzed a multilayer CHA amplification cascade to produce numerous long dsDNA duplexes Hn/Hn+1 (n = 2, 4, 6, ...). Then the Hn/Hn+1 displaced the ferrocene (Fc)-labeled ssDNA (Sx+1, x = 1, 3, 5, ...) to hybridize with the Sx sequence on the gold electrode surface. Consequently, a great number of long Sx/Hn/Hn+1 duplexes were immobilized for binding Ru(phen)32+ to obtain an amplified ECL signal. Meanwhile, the EC signal of Fc was reduced, and the quenching effect of Fc to ECL signal also decreased. By measuring the ratio of the ECL signal of Ru(phen)32+ to the EC signal of Fc, quantitative analysis of miRNA-499 with high accuracy and reproducibility was obtained. The ratiometric biosensor shows high sensitivity and a wide linear range of 6 orders of magnitude. With the help of DSN-assisted target recycling, this strategy can be easily extended to detect other miRNAs without redesigning the CHA cascade system. The proposed "hybrid" ratiometric ECL/EC strategy enriches the ratiometric sensors and can find extensive applications in bioanalysis, especially for multiplex detection.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Mengqian Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jing Ye
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Mengxia Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Qiuju Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
33
|
Kim HY, Ahn JK, Lee CY, Park HG. A hairpin probe-mediated isothermal amplification method to detect target nucleic acid. Anal Chim Acta 2020; 1114:7-14. [DOI: 10.1016/j.aca.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
|
34
|
Sun J, Sun X. Recent advances in the construction of DNA nanostructure with signal amplification and ratiometric response for miRNA sensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Kim DM, Yoo SM. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: recent biotechnological advances and future perspectives. Crit Rev Biotechnol 2020; 40:787-803. [DOI: 10.1080/07388551.2020.1764485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies. Mol Aspects Med 2020; 72:100832. [DOI: 10.1016/j.mam.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
37
|
Zhou L, Li J, Zhang K, Shi L, Qin S, Li H. Enabling Molecular Gapping and Bridging on a Biosensing Surface via Electrochemical Cross-Linking and Cleavage. Anal Chem 2020; 92:2635-2641. [PMID: 31927916 DOI: 10.1021/acs.analchem.9b04538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein detection in complicated biological samples requires robust design and a rigorous rinsing process. Many recently developed artificial targeting probes, however, often do not possess antibody-like binding strength that enables them to endure harsh biosensing conditions, and the classic 2-to-1 sandwich binding pattern is unavailable for many targets, often necessitating a complicated indirect signal conversion mechanism. Here, an attempt is made to provide innovative "covalent" solutions to such problems by employing peptide reactivity to form a covalent and robust biosensing structure upon target binding. Both the cross-coupling and cleavage of peptide chains are employed to achieve the classic 2-to-1 binding when only one targeting probe is available. Specifically, a targeting probe against the protein and a signaling probe are coimmobilized onto the sensing interface. The ratio between the two probes and their surface density is modulated so that direct cross-linking between the two immobilized probes is suppressed by the average distance between two such probes. Upon protein binding, the protein molecule may bridge that gap by itself. The signaling probe can carry any motif of signal amplification. And here a Cu-ion-complexed motif, which can exhibit peroxidase-like activity upon electrochemical agitation, is employed multipurposely as the catalyst for cross-linking, cleavage, and signal amplification. Three nonhomologous target proteins can be sensitively quantified in serum-spiked samples and clinical sample detection of one of them is also successful; these results suggest the potential of the proposed method in future clinical applications.
Collapse
Affiliation(s)
- Lei Zhou
- School of Biological Science and Technology , University of Jinan , Shandong 250022 , China
| | - Jinglong Li
- Department of Laboratory Medicine, The Second Hospital of Nanjing , Nanjing University of Chinese Medicine , Nanjing 210003 , P.R. China
| | - Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , Wuxi , Jiangsu 214063 , China
| | - Lei Shi
- School of Pharmacy , Shandong University of Traditional Chinese Medicine , Jinan 250355 , China
| | - Shaojiao Qin
- School of Biological Science and Technology , University of Jinan , Shandong 250022 , China
| | - Hao Li
- School of Biological Science and Technology , University of Jinan , Shandong 250022 , China
| |
Collapse
|
38
|
Wei S, Chen G, Jia X, Mao X, Chen T, Mao D, Zhang W, Xiong W. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Anal Chim Acta 2020; 1095:179-184. [DOI: 10.1016/j.aca.2019.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023]
|
39
|
Li T, Duan R, Duan Z, Huang F, Xia F. Fluorescence Signal Amplification Strategies Based on DNA Nanotechnology for miRNA Detection. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-0031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Tan L, Fu S, Lu J, Hu K, Liang X, Li Q, Zhao S, Tian J. Detection of microRNA using enzyme-assisted amplifying and DNA-templated silver nanoclusters signal-off fluorescence bioassay. Talanta 2019; 210:120623. [PMID: 31987186 DOI: 10.1016/j.talanta.2019.120623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
A Simple and fast analysis strategy of fluorescence quenching based on DNA-templated silver nanoclusters was developed for detection of miR-122 related to diseases such as human liver. We used Exo III to cleave the silver cluster template and assist in the DNA-RNA complex cycle. When the target is absent, the silver cluster template remains intact, and DNA-AgNCs are generated under the action of AgNO3/NaBH4, producing a strong background fluorescence signal. Once the target is added, the site of the Exo III occurs after a series of hybridization cycles, the Exo III acts, the template DNA is continuously hydrolyzed, and the fluorescence intensity of the system is significantly reduced. By comparing the changes in the fluorescence signal, we found that this strategy has good sensitivity and the detection limit is as low as 84.0 pM. The strategy also has excellent discriminating ability and good selectivity, it can provide a persuasive reference for the early diagnosis of liver cancer and hepatitis.
Collapse
Affiliation(s)
- Li Tan
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Shui Fu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Jiangnan Lu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Kun Hu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Xuehua Liang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Qing Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
41
|
Huang J, Shangguan J, Guo Q, Ma W, Wang H, Jia R, Ye Z, He X, Wang K. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019; 144:4917-4924. [PMID: 31313769 DOI: 10.1039/c9an01013k] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are attractive candidates for biomarkers for early cancer diagnosis, and play vital roles in physiological and pathological processes. In this work, we developed a colorimetric and fluorescent dual-mode sensor for miRNA detection based on the optical properties of gold nanoparticles (AuNPs) and the duplex-specific nuclease (DSN)-assisted signal amplification technique. In brief, FAM labelled hairpin probes (HPs) were immobilized on AuNPs, and fluorescence was efficiently quenched by the vicinity of the fluorophores to the AuNPs surface. In the presence of target miRNAs, the HPs could specifically hybridize with miRNAs and the DNA strand in the DNA/RNA heteroduplexes could be subsequently hydrolyzed by DSN. As a result, numbers of fluorophores were released into the solution, resulting in obvious fluorescence signal recovery. Meanwhile, the target miRNAs were able to participate in other hybridization reactions. With the DSN-assisted signal amplification technique, lots of gold nanoparticles were produced with short-chain DNA on their surface, which could aggregate in salt solution and result in a colorimetric detection. The proposed dual-mode strategy offers a sensitive, accurate and selective detection method for miRNAs. One reason is that the stem of the HPs was elaborately designed to avoid hydrolyzation by DSN under optimal conditions, which ensures a relatively low background and high sensitivity. The other is that the dual-mode strategy is more beneficial for enhancing the accuracy and reproducibility of the measurements. Moreover, the unique selective-cutting ability and single-base mismatch differentiation capability of the DSN also give rise to a satisfactory selectivity. This demonstrated that the developed method could quantitatively detect miR-21 down to 50 pM with a linear calibration range from 50 pM to 1 nM, and the analytical assay of target miRNAs in cell lysate samples revealed its great potential for application in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Zi Ye
- High School of Yali, Changsha, Hunan 410007, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
42
|
Wang S, Wang L, Xu X, Li X, Jiang W. MnO2 nanosheet-mediated ratiometric fluorescence biosensor for MicroRNA detection and imaging in living cells. Anal Chim Acta 2019; 1063:152-158. [DOI: 10.1016/j.aca.2019.02.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023]
|
43
|
Zhu CS, Zhu L, Tan DA, Qiu XY, Liu CY, Xie SS, Zhu LY. Avenues Toward microRNA Detection In Vitro: A Review of Technical Advances and Challenges. Comput Struct Biotechnol J 2019; 17:904-916. [PMID: 31346383 PMCID: PMC6630062 DOI: 10.1016/j.csbj.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the decades, the biological role of microRNAs (miRNAs) in the post-transcriptional regulation of gene expression has been discovered in many cancer types, thus initiating the tremendous expectation of their application as biomarkers in the diagnosis, prognosis, and treatment of cancer. Hence, the development of efficient miRNA detection methods in vitro is in high demand. Extensive efforts have been made based on the intrinsic properties of miRNAs, such as low expression levels, high sequence homology, and short length, to develop novel in vitro miRNA detection methods with high accuracy, low cost, practicality, and multiplexity at point-of-care settings. In this review, we mainly summarized the newly developed in vitro miRNA detection methods classified by three key elements, including biological recognition elements, additional micro-/nano-materials and signal transduction/readout elements, their current challenges and further applications are also discussed.
Collapse
Affiliation(s)
- Chu-shu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| | - De-an Tan
- Department of Clinical Laboratory, Hospital of National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Xin-yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Chuan-yang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Si-si Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lv-yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| |
Collapse
|
44
|
Novel electrochemical nanoswitch biosensor based on self-assembled pH-sensitive continuous circular DNA. Biosens Bioelectron 2019; 131:274-279. [DOI: 10.1016/j.bios.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
|
45
|
Shan Y, Zhou X, Huang R, Xing D. High-Fidelity and Rapid Quantification of miRNA Combining crRNA Programmability and CRISPR/Cas13a trans-Cleavage Activity. Anal Chem 2019; 91:5278-5285. [PMID: 30873832 DOI: 10.1021/acs.analchem.9b00073] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that post-transcriptionally regulate gene expression. It has been proved that the aberrant expression of miRNAs is related to disease and miRNAs can serve as potential biomarkers for early tumor diagnosis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a is a recently discovered CRISPR-RNA (crRNA) guided RNA manipulation tool. The recognition of target RNA can morphologically activate the robust nonspecific trans ribonuclease activity of Cas13a. This unique property makes Cas13a ideal for nucleic acid detection. Herein, we first exploited CRISPR/LbuCas13a to directly detect miRNAs with high specificity and simplicity. A limit of detection (LOD) as low as 4.5 amol was achieved by this one-step assay within 30 min, and the dynamic range spanned 4 orders of magnitude from 10 amol to 100 fmol. More importantly, single nucleotide variation, even at the end of target miRNA, can be discriminated by rationally programmed crRNA. In addition, the practical application ability of this Cas13a/crRNA-based signal amplification strategy was demonstrated by miRNA quantification in complex biological samples (total small RNA). With excellent reliability, sensitivity, and simple to implement features, this method promises a great potential for early diagnosis of miRNA-related disease. Moreover, the systematic analysis of the crRNA design could provide guidance to further develop Cas13a-based molecular diagnoses.
Collapse
Affiliation(s)
- Yuanyue Shan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , People's Republic of China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , People's Republic of China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , People's Republic of China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , People's Republic of China
| |
Collapse
|
46
|
Competitive fluorometric assay for the food toxin T-2 by using DNA-modified silver nanoclusters, aptamer-modified magnetic beads, and exponential isothermal amplification. Mikrochim Acta 2019; 186:219. [PMID: 30847660 DOI: 10.1007/s00604-019-3322-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
The authors describe an aptamer based assay for the mycotoxin T-2. The method is making use of exponential isothermal amplification reaction (EXPAR) and fluorescent silver nanoclusters (AgNCs). Free T-2 and cDNA (which is a DNA that is partially complementary to the aptamer) compete for binding to aptamer-modified magnetic beads. The cDNA collected by magnetic separation can be used as a primer to trigger EXPAR to obtain ssDNA. The C-base-rich ssDNA binds and reduces Ag(I) ion to form fluorescent AgNCs. Fluorescence is measured at excitation/emission wavelengths of 480/525 nm. T-2 can be detected by fluorometry with a detection limit as low as 30 fg·mL-1. The method was applied to analyse spiked oat and corn, and the average recoveries ranged from 97.3 to 102.3% and from 95.9 to 107.5%, respectively. The results were in good agreement with data of the commercial ELISA kit. The assay is highly sensitive, has a wide analytical range, good specificity and reliable operation. It provides a promising alternative for the standard method for quantitative detection of T-2. Graphical abstract Schematic presentation of fluorometric assay for T-2 based on aptamer-functionalized magnetic beads exponential, isothermal amplification reaction (EXPAR) and fluorescent silver nanoclusters (AgNCs).
Collapse
|
47
|
Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens Bioelectron 2019; 128:17-22. [DOI: 10.1016/j.bios.2018.12.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023]
|
48
|
Mittal S, Thakur S, Mantha AK, Kaur H. Bio-analytical applications of nicking endonucleases assisted signal-amplification strategies for detection of cancer biomarkers -DNA methyl transferase and microRNA. Biosens Bioelectron 2019; 124-125:233-243. [DOI: 10.1016/j.bios.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
|
49
|
Mao D, Chen H, Tang Y, Li J, Cao Y, Zhao J. Application of Isothermal Nucleic Acid Signal Amplification in the Detection of Hepatocellular Carcinoma-Associated MicroRNA. Chempluschem 2018; 84:8-17. [DOI: 10.1002/cplu.201800382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Dongsheng Mao
- Center for Molecular Recognition and Biosensing; School of Life Sciences; Shanghai University; Shanghai 200444 P. R. China
| | - Hong Chen
- Center for Molecular Recognition and Biosensing; School of Life Sciences; Shanghai University; Shanghai 200444 P. R. China
| | - Yingying Tang
- Center for Molecular Recognition and Biosensing; School of Life Sciences; Shanghai University; Shanghai 200444 P. R. China
| | - Jingwen Li
- Center for Molecular Recognition and Biosensing; School of Life Sciences; Shanghai University; Shanghai 200444 P. R. China
- CAS Key Lab of Bio-Medical Diagnostics Institution; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing; School of Life Sciences; Shanghai University; Shanghai 200444 P. R. China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing; School of Life Sciences; Shanghai University; Shanghai 200444 P. R. China
| |
Collapse
|
50
|
Reid MS, Le XC, Zhang H. Die exponentielle isotherme Amplifikation von Nukleinsäuren und Assays zur Detektion von Proteinen, Zellen, kleinen Molekülen und Enzymaktivitäten: Anwendungen für EXPAR. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael S. Reid
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
| | - X. Chris Le
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
- Department of Laboratory Medicine and Pathology; Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology; Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building; University of Alberta; Edmonton Alberta T6G 2G3 Kanada
| |
Collapse
|