1
|
Darshna, Dkhar DS, Srivastava P, Chandra P. Nano-fibers fabrication using biological macromolecules: Application in biosensing and biomedicine. Int J Biol Macromol 2025; 306:141508. [PMID: 40020816 DOI: 10.1016/j.ijbiomac.2025.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Nanofibers, a type of nanomaterial, have been widely use in a variety of fields, both research and commercial applications. They are a material of choice in a diverse range of applications due to their characteristics and unique physicochemical properties. Nanofibers have cross-sectional dimeters varying between 1 nm and 100 nm, the nano range dimensions providing them characteristics such as high surface area-to-volume ratio, highly porous as well as interconnected networks. There are various types of materials which have been used to synthesize nanofibers both biological (namely, hyaluronic acid, chitosan, alginate, fibrin, collagen, gelatin, silk fibroin, gums, and cellulose) as well as synthetic (namely, poly(lactic acid), poly(1-caprolactone), poly(vinyl alcohol), and polyurethane) polymers which have been briefly discussed in the present review. The review also explores various fabrication techniques for producing nanofibers, such as physical/chemical/biological techniques as well as electrospinning/non-spinning techniques. Due to their distinctive physicochemical qualities, nanofibers have become intriguing one-dimensional nanomaterials with applications in a wide range of biomedical fields. In line with this, the review discusses about various applications of nanofibers, namely, wound dressing, drug delivery, implants, diagnostic devices, tissue engineering, and biosensing. Furthermore, having an insight of the distinctive characteristics of nanofibers materials which could have immense potential in various biosensing applications, this review emphasizes on application of nanofibrous materials in the field of biosensing. However, despite these advances, there remain some challenges that need to be addressed before nanofiber technology can be widely adopted for its commercial use in biomedical as well as biosensing applications.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Kocak M, Can Osmanogullari S, Soyler D, Arın Ozturmen B, Bekircan O, Biyiklioglu Z, Soylemez S. Synthesis and comparison of the performance of two different water-soluble phthalocyanine based electrochemical biosensor. Bioelectrochemistry 2024; 160:108788. [PMID: 39106731 DOI: 10.1016/j.bioelechem.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Herein, a comparative study between novel water-soluble phthalocyanine-based biosensors was performed for the application of glucose sensing. For this purpose, two different copper (II) and manganese (III) phthalocyanines and their water-soluble derivatives were synthesized, and then their role as a supporting material for enzyme immobilization was evaluated by comparing their sensor performances. Two different phthalocyanine (AP-OH2-MnQ (MnPc) and AP-OH2-CuQ (CuPc)) were tested using electrochemical biosensor with immobilized glucose oxidase (GOx). To the best of our knowledge, the related water-soluble phthalocyanine-based glucose biosensors were attempted for the first time, and the developed approach resulted in improved biosensor characteristics. The constructed biosensors GE/MnPc/GOx and GE/CuPc/GOx showed good linearity between 0.003-1.0 mM and 0.05-0.4 mM, respectively. The limit of detection was estimated at 0.0026 mM for the GE/MnPc/GOx and 0.019 mM for the GE/CuPc/GOx. KMapp and sensitivity values were also calculated as 0.026 mM and 175.043 µAmM-1 cm-2 for the GE/MnPc/GOx biosensor and 0.178 mM and 117.478 µAmM-1 cm-2 for the GE/CuPc/GOx biosensor. Moreover, the fabricated biosensors were successfully tested to detect glucose levels in beverages with high recovery results. The present study shows that the proposed water-soluble phthalocyanines could be a good alternative for quick and cheap glucose sensing with improved analytical characteristics.
Collapse
Affiliation(s)
- Merve Kocak
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Sila Can Osmanogullari
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Dilek Soyler
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Berivan Arın Ozturmen
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Saniye Soylemez
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey.
| |
Collapse
|
3
|
Ömeroğlu İ. Novel non-peripheral mercaptopyridine-substituted mono- and double-decker lutetium(III) phthalocyanines: synthesis, photophysicochemical and electrochemical properties. Dalton Trans 2024; 53:5985-5992. [PMID: 38465966 DOI: 10.1039/d3dt04341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In this study, novel non-peripheral tetra-mercaptopyridine-substituted mono- and double-decker phthalocyanines (LuPc and LuPc2) containing lutetium(III) as a rare earth metal were synthesized and characterized using different spectroscopic techniques. ESR and electrochemical analyses were performed to support the sandwich structure of LuPc2. The g factor was determined to be 2.00039 and the characteristic first reduction couple at 0.29 V indicated a reduction of the radical Pc ring of LuPc2. In addition, the UV-Vis-NIR spectra of LuPc2 in neutral, reduced, and oxidized states demonstrate its intrinsic π-radical nature in CHCl3. The photophysicochemical properties of LuPc and LuPc2 were investigated in DMSO. It was found that mono-phthalocyanine (LuPc) is a more effective photosensitizer than double-decker (LuPc2) and metal-free (H2Pc) phthalocyanines based on a comparison of their photophysical and photochemical properties. The singlet oxygen quantum yields (ΦΔ) of the synthesized LuPc and LuPc2 compounds were calculated to be 0.57 and 0.14, respectively, and the obtained results were compared with H2Pc (ΦΔ = 0.04). Also, electrochemical measurements were performed to estimate their redox potentials and the results indicated the important electrochemical performance of double-decker phthalocyanine (LuPc2).
Collapse
Affiliation(s)
- İpek Ömeroğlu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
4
|
Pilo MI, Baluta S, Loria AC, Sanna G, Spano N. Poly(Thiophene)/Graphene Oxide-Modified Electrodes for Amperometric Glucose Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2840. [PMID: 36014704 PMCID: PMC9413253 DOI: 10.3390/nano12162840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The availability of fast and non-expensive analytical methods for the determination of widespread interest analytes such as glucose is an object of large relevance; this is so not only in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context, electrochemical biosensors have been proposed in different arrangements, according to the mode of electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the analytical performances of both the arrangements (without and with graphene oxide) in the glucose detection were compared. The biosensor containing graphene oxide showed satisfactory values of linear dynamic range (1.0-10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM-1 cm-2). Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose, saccharose, and ascorbic acid was evaluated.
Collapse
Affiliation(s)
- Maria I. Pilo
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna C. Loria
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Gavino Sanna
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Nadia Spano
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
5
|
Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. BIOSENSORS 2022; 12:137. [PMID: 35323407 PMCID: PMC8946794 DOI: 10.3390/bios12030137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/21/2023]
Abstract
Glucose measurement is a fundamental tool in the daily care of Diabetes Mellitus (DM) patients and healthcare professionals. While there is an established market for glucose sensors, the rising number of DM cases has promoted intensive research to provide accurate systems for glucose monitoring. Polyaniline (PAni) is a conductive polymer with a linear conjugated backbone with sequences of single C-C and double C=C bonds. This unique structure produces attractive features for the design of sensing systems such as conductivity, biocompatibility, environmental stability, tunable electrochemical properties, and antibacterial activity. PAni-based glucose sensors (PBGS) were actively developed in past years, using either enzymatic or non-enzymatic principles. In these devices, PAni played roles as a conductive material for electron transfer, biocompatible matrix for enzymatic immobilization, or sensitive layer for detection. In this review, we covered the development of PBGS from 2015 to the present, and it is not even exhaustive; it provides an overview of advances and achievements for enzymatic and non-enzymatic PBGB PBGS for self-monitoring and continuous blood glucose monitoring. Additionally, the limitations of PBGB PBGS to advance into robust and stable technology and the challenges associated with their implementation are presented and discussed.
Collapse
Affiliation(s)
- Velia Osuna
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| | - Alejandro Vega-Rios
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | | | - Rocio B. Dominguez
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| |
Collapse
|
6
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Wei D, Zhu J, Luo L, Huang H, Li L, Yu X. Ultra‐stretchable, fast self‐healing, conductive hydrogels for writing circuits and magnetic sensors. POLYM INT 2022. [DOI: 10.1002/pi.6354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Duanli Wei
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
- College of Post and Telecommunication of Wuhan Institute of Technology Wuhan China
| | - Jiaqing Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| | - Licheng Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| | - Huabo Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| | - Liang Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education Jianghan University Wuhan China
| | - Xianghua Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Materials Science and Engineering Wuhan Institute of Technology Wuhan China
| |
Collapse
|
8
|
Koczorowski T, Cerbin-Koczorowska M, Rębiś T. Azaporphyrins Embedded on Carbon-Based Nanomaterials for Potential Use in Electrochemical Sensing-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2861. [PMID: 34835626 PMCID: PMC8620011 DOI: 10.3390/nano11112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
Phthalocyanines and porphyrazines as macrocyclic aza-analogues of well-known porphyrins were deposited on diverse carbon-based nanomaterials and investigated as sensing devices. The extended π-conjugated electron system of these macrocycles influences their ability to create stable hybrid systems with graphene or carbon nanotubes commonly based on π-π stacking interactions. During a 15-year period, the electrodes modified by deposition of these systems have been applied for the determination of diverse analytes, such as food pollutants, heavy metals, catecholamines, thiols, glucose, peroxides, some active pharmaceutical ingredients, and poisonous gases. These procedures have also taken place, on occasion, in the presence of various polymers, ionic liquids, and other moieties. In the review, studies are presented that were performed for sensing purposes, involving azaporphyrins embedded on graphene, graphene oxide or carbon nanotubes (both single and multi-walled ones). Moreover, possible methods of electrode fabrication, limits of detection of each analyte, as well as examples of macrocyclic compounds applied as sensing materials, are critically discussed.
Collapse
Affiliation(s)
- Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Magdalena Cerbin-Koczorowska
- Department of Medical Education, Poznan University of Medical Sciences, 7 Rokietnicka Str., 60-806 Poznan, Poland;
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
9
|
Landim VPA, Silva BVM, Sobral Filho DC, Dutra RF. A Novel Redox‐free Immunosensor Concept Based on Cobalt Phthalocyanine@carbon Nanotubes Pseudocapacitor for Cardiac B‐type Natriuretic Peptide Detection. ELECTROANAL 2021. [DOI: 10.1002/elan.202100177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vicente P. A. Landim
- Biomedical Engineering Laboratory, Department of Biomedical Engineering Federal University of Pernambuco Av. Prof. Moraes Rego, 1235. Recife-PE 50670-901 Brazil
| | - Bárbara V. M. Silva
- Biomedical Engineering Laboratory, Department of Biomedical Engineering Federal University of Pernambuco Av. Prof. Moraes Rego, 1235. Recife-PE 50670-901 Brazil
| | - Dário C. Sobral Filho
- Cardiac Emergency of Pernambuco (PROCAPE)/State University of Pernambuco R. dos Palmares Recife-PE 74970-240 Brazil
| | - Rosa F. Dutra
- Biomedical Engineering Laboratory, Department of Biomedical Engineering Federal University of Pernambuco Av. Prof. Moraes Rego, 1235. Recife-PE 50670-901 Brazil
| |
Collapse
|
10
|
Electrochemical evaluation of sulfide mineral modified glassy carbon electrode as novel mediated glucose biosensor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Rengasamy K, Ranaivoarisoa T, Bai W, Bose A. Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1. NANOTECHNOLOGY 2021; 32:035103. [PMID: 33017807 DOI: 10.1088/1361-6528/abbe58] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 ± 0.9 mg l-1). This is ∼4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to -11.7 ± 0.1 μA cm-2, ∼5 times higher than CF cathode (-2.3 ± 0.08 μA cm-2). The faradaic efficiency of the modified cathode was ∼2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.
Collapse
Affiliation(s)
- Karthikeyan Rengasamy
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Tahina Ranaivoarisoa
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| | - Wei Bai
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Arpita Bose
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, United States of America
| |
Collapse
|
12
|
Sarıoğulları H, Sengul IF, Gürek AG. Lu( iii) bis-phthalocyanines containing carbazole moieties: synthesis, characterization, electrochemical properties and sensor applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj04052a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, the synthesis and characterization of sandwich type Lu(iii) bis-phthalocyanines bearing electropolymerizable carbazole groups were evaluated and their electrochemical sensing properties studied towards DA, UA and AA.
Collapse
Affiliation(s)
- Hidayet Sarıoğulları
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Ibrahim F. Sengul
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Ayşe Gül Gürek
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
13
|
Kazemi F, Naghib SM, Zare Y, Rhee KY. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1858871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatemeh Kazemi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
14
|
Liang Z, Zhang J, Wu C, Hu X, Lu Y, Wang G, Yu F, Zhang X, Wang Y. Flexible and self-healing electrochemical hydrogel sensor with high efficiency toward glucose monitoring. Biosens Bioelectron 2020; 155:112105. [DOI: 10.1016/j.bios.2020.112105] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023]
|
15
|
Liu Y, Hao M, Chen Z, Liu L, Liu Y, Yang W, Ramakrishna S. A review on recent advances in application of electrospun nanofiber materials as biosensors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Albakour M, Zeyrek Ongun M, Topal SZ, Gürek AG. Zn(ii) phthalocyanines tetra substituted by aryl and alkyl azides: design, synthesis and optical detection of H2S. NEW J CHEM 2020. [DOI: 10.1039/d0nj00383b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental examination of two novel Zn(ii)-phthalocyanines having aryl and alkyl azide functional groups at the peripheral positions that have been designed/synthesized for hydrogen sulfide (H2S) sensing purposes.
Collapse
Affiliation(s)
- Mohamad Albakour
- Department of Chemisytry
- Gebze Technical University
- 41400 Gebze
- Turkey
| | - Merve Zeyrek Ongun
- Chemistry Technology Program
- Izmir Vocational High School
- Dokuz Eylul University
- Izmir
- Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemisytry
- Gebze Technical University
- 41400 Gebze
- Turkey
| |
Collapse
|
17
|
Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104266] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J Med Chem 2019; 63:1-22. [PMID: 31502840 DOI: 10.1021/acs.jmedchem.9b00803] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inherently conducting polymers (ICPs) are a specific category of synthetic polymers with distinctive electro-optic properties, which involve conjugated chains with alternating single and double bonds. Polyaniline (PANI), as one of the most well-known ICPs, has outstanding potential applications in biomedicine because of its high electrical conductivity and biocompatibility caused by its hydrophilic nature, low-toxicity, good environmental stability, and nanostructured morphology. Some of the limitations in the use of PANI, such as its low processability and degradability, can be overcome by the preparation of its blends and nanocomposites with various (bio)polymers and nanomaterials, respectively. This review describes the state-of-the-art of biological activities and applications of conductive PANI-based nanocomposites in the biomedical fields, such as antimicrobial therapy, drug delivery, biosensors, nerve regeneration, and tissue engineering. The latest progresses in the biomedical applications of PANI-based nanocomposites are reviewed to provide a background for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran.,Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR) , Naples 80125 , Italy
| | - Behnaz Ashtari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran.,Shadad Ronak Commercialization Company , Pasdaran Street , Tehran , 1947 , Iran
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering , Politecnico di Milano Technical University , Milano 20133 , Italy
| | - Ahmad Motahari
- Young Researchers and Elite Club, Jahrom Branch , Islamic Azad University , Jahrom 74147-85318 , Iran
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology , University of Applied Sciences and Arts of Southern Switzerland , Manno 6928 , Switzerland.,Department of Surgical Sciences, Faculty of Medical Sciences, Orthopaedic Clinic , IRCCS A.O.U. San Martino , Genova 16132 , Italy.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Donaueschingenstrasse 13 , 1200 Vienna , Austria
| |
Collapse
|
19
|
|
20
|
Sabu C, Henna T, Raphey V, Nivitha K, Pramod K. Advanced biosensors for glucose and insulin. Biosens Bioelectron 2019; 141:111201. [DOI: 10.1016/j.bios.2019.03.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
21
|
Wang X, Ou G, Zhou K, Wang X, Wang L, Zhang X, Feng Y, Bai Y, Wu H, Xu Z, Ge J. Targeted Heating of Enzyme Systems Based on Photothermal Materials. Chembiochem 2019; 20:2467-2473. [PMID: 31063617 DOI: 10.1002/cbic.201900267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 12/14/2022]
Abstract
This study demonstrates that the enzymatic reaction rate can be increased significantly by targeted heating of the microenvironment around the enzyme, while maintaining the reaction system at environmental temperature. Enzyme molecules are covalently attached to the surface of Fe3 O4 @reduced graphite oxide (rGO). Under visible-light irradiation, the reaction rate catalyzed by the enzyme-Fe3 O4 @rGO system is clearly enhanced relative to that of the free enzyme and a mixture of free enzyme and Fe3 O4 @rGO. This local heating mechanism contributes to promotion of the enzymatic reactions of the targeted heating of the enzyme (THE) system, which has been validated by using different enzymes, including lipase, glucose oxidase, and organophosphorus hydrolase. These results indicate that targeted heating of the catalytic centers has the same effect on speeding up reactions as that of traditional heating methods, which treat the whole reaction system. As an example, it is shown that the THE system promotes the sensitivity of an enzyme screen-printed electrode by 14 times at room temperature, which implies that the THE system can be advantageous in improving enzyme efficiency, especially if heating the entire system is impossible or could lead to degradation of substrates or damage of components, such as in vitro bioanalysis of frangible molecules or in vivo diagnosis.
Collapse
Affiliation(s)
- Xuerui Wang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Gang Ou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ke Zhou
- Applied Mechanics Laboratory, Department of Engineering Mechanics and, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiangqing Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Licheng Wang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Feng
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and, Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Jun Ge
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Moonla C, Nontapha C, Ouiram T, Preechaworapun A, Tangkuaram T. Enhancing a Novel Robust Multicomposite Materials Platform for Glucose Biosensors. ELECTROANAL 2019. [DOI: 10.1002/elan.201800807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chochanon Moonla
- Applied Chemistry Program, Faculty of ScienceMaejo University Chiang Mai 50290 Thailand
| | | | - Tik Ouiram
- Applied Chemistry Program, Faculty of ScienceMaejo University Chiang Mai 50290 Thailand
| | - Anchana Preechaworapun
- Chemistry Program, Faculty of Science and TechnologyPibulsongkram Rajabhat University Phitsanulok 65000 Thailand
| | - Tanin Tangkuaram
- Applied Chemistry Program, Faculty of ScienceMaejo University Chiang Mai 50290 Thailand
| |
Collapse
|
23
|
Al-Sagur H, Shanmuga sundaram K, Kaya E, Durmuş M, Basova T, Hassan A. Amperometric glucose biosensing performance of a novel graphene nanoplatelets-iron phthalocyanine incorporated conducting hydrogel. Biosens Bioelectron 2019; 139:111323. [DOI: 10.1016/j.bios.2019.111323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/12/2019] [Indexed: 12/25/2022]
|
24
|
Silva RN, Vijayan AN, Westbrook E, Yu Z, Zhang P. Nanoparticle assisted nuclear relaxation-based oligonucleotide detection. Anal Chim Acta 2019; 1062:118-123. [PMID: 30947987 DOI: 10.1016/j.aca.2019.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/15/2018] [Accepted: 02/19/2019] [Indexed: 12/01/2022]
Abstract
We present a proof-of-concept "on-off" detection scheme, which uses gadolinium phthalocyanine (GdTcPc)-grafted silica nanoparticles as paramagnetic centers, capable of modifying the transverse relaxation time (T2) of water protons in solution. A DNA strand (as probe) was conjugated to the GdTcPc to act as a recognition element. In the presence of the target DNA, which was complementary to the probe, an increase in the T2 value was detected, with magnitude proportional to the target DNA concentration. The linear range was observed from 30 to 140 nM, with limit of detection of 15 nM. The developed nuclear relaxation-based detection scheme is shown to be a simple, fast and selective method to detect DNA and could be useful in point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Rebecca N Silva
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Anjaly N Vijayan
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Emily Westbrook
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Zhao Yu
- Department of Chemistry, University of Cincinnati, OH, 45221, USA
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, OH, 45221, USA.
| |
Collapse
|
25
|
Guler M, Dilmac Y. Palladium nanoparticles decorated (3-aminopropyl)triethoxysilane functionalized reduced graphene oxide for electrochemical determination of glucose and hydrogen peroxide. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Lee JH, Kim DS, Yang JH, Chun Y, Yoo HY, Han SO, Lee J, Park C, Kim SW. Enhanced electron transfer mediator based on biochar from microalgal sludge for application to bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 264:387-390. [PMID: 30041774 DOI: 10.1016/j.biortech.2018.06.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 05/28/2023]
Abstract
This study is focused on the utilization of waste microalgal sludge (MS) from microalgal extraction and its potential as an electrode material. The MS was activated under N2 at high temperature for conversion to biochar (MSB). In addition, cobalt (Co; metal hydroxide) and chitosan were used as a mediator for electron transfer by immobilization on MSB (MSB/Co/chitosan). Through analysis of the surface and components of the MSB/Co/chitosan, it was shown that Co and chitosan were properly synthesized with MSB. The enzymatic fuel cell (EFC) system successfully obtained a power density of 3.1 mW cm-2 and a current density of 9.7 mA cm-2. In addition, the glucose biosensors applied with the developed electron transfer mediator showed a sensitivity of 0.488 mA mM-1 cm-2.
Collapse
Affiliation(s)
- Ja Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Dong Sup Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Ji Hyun Yang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Youngsang Chun
- Department of Interdisciplinary Bio-Micro System Technology, College of Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Jinyoung Lee
- Department of Plant and Food Sciences, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan, Chungnam 31066, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 139-701, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
27
|
El-Maiss J, Cuccarese M, Maerten C, Lupattelli P, Chiummiento L, Funicello M, Schaaf P, Jierry L, Boulmedais F. Mussel-Inspired Electro-Cross-Linking of Enzymes for the Development of Biosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18574-18584. [PMID: 29799715 DOI: 10.1021/acsami.8b04764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In medical diagnosis and environmental monitoring, enzymatic biosensors are widely applied because of their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Enzyme immobilization is a critical process in the development of this type of biosensors with the necessity to avoid the denaturation of the enzymes and ensuring their accessibility toward the analyte. Electrodeposition of macromolecules is increasingly considered to be the most suitable method for the design of biosensors. Being simple and attractive, it finely controls the immobilization of enzymes on electrode surfaces, usually by entrapment or adsorption, using an electrical stimulus. Performed manually, enzyme immobilization by cross-linking prevents enzyme leaching and was never done using an electrochemical stimulus. In this work, we present a mussel-inspired electro-cross-linking process using glucose oxidase (GOX) and a homobifunctionalized catechol ethylene oxide spacer as a cross-linker in the presence of ferrocene methanol (FC) acting as a mediator of the buildup. Performed in one pot, the process takes place in three steps: (i) electro-oxidation of FC, by the application of cyclic voltammetry, creating a gradient of ferrocenium (FC+); (ii) oxidation of bis-catechol into a bis-quinone molecule by reaction with the electrogenerated FC+; and (iii) a chemical reaction of bis-quinone with free amino moieties of GOX through Michael addition and a Schiff's base condensation reaction. Employed for the design of a second-generation glucose biosensor using ferrocene methanol (FC) as a mediator, this new enzyme immobilization process presents several advantages. The cross-linked enzymatic film (i) is obtained in a one-pot process with nonmodified GOX, (ii) is strongly linked to the metallic electrode surface thanks to catechol moieties, and (iii) presents no leakage issues. The developed GOX/bis-catechol film shows a good response to glucose with a quite wide linear range from 1.0 to 12.5 mM as well as a good sensitivity (0.66 μA/mM cm2) and a high selectivity to glucose. These films would distinguish between healthy (3.8 and 6.5 mM) and hyperglycemic subjects (>7 mM). Finally, we show that this electro-cross-linking process allows the development of miniaturized biosensors through the functionalization of a single electrode out of a microelectrode array. Elegant and versatile, this electro-cross-linking process can also be used for the development of enzymatic biofuel cells.
Collapse
Affiliation(s)
- Janwa El-Maiss
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
| | - Marco Cuccarese
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Clément Maerten
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
| | - Paolo Lupattelli
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Lucia Chiummiento
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Maria Funicello
- Dipartimento di Scienze , Università degli Studi della Basilicata , 85100 Potenza , Italy
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Ecole de Chimie, Polymères et Matériaux , Université de Strasbourg , 67087 Strasbourg , France
- University of Strasbourg Institute of Advanced Study , 67083 Strasbourg , France
- Biomatériaux et Bioingénierie , Institut National de la Santé et de la Recherche Médicale, UMR-S 1121 , 67087 Strasbourg , France
- Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), and Fédération des Matériaux et Nanoscience d'Alsace (FMNA) , Université de Strasbourg , 67000 Strasbourg , France
- International Center for Frontier Research in Chemistry , 67083 Strasbourg , France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- Ecole de Chimie, Polymères et Matériaux , Université de Strasbourg , 67087 Strasbourg , France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France
- University of Strasbourg Institute of Advanced Study , 67083 Strasbourg , France
| |
Collapse
|