1
|
Ourabi M, Massey RS, Prakash R, Lessard BH. Adapting single-walled carbon nanotube-based thin-film transistors to flexible substrates with electrolyte-gated configurations using a versatile tri-layer polymer dielectric. NANOSCALE ADVANCES 2025; 7:1154-1162. [PMID: 39777233 PMCID: PMC11701725 DOI: 10.1039/d4na01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Flexibility has been a key selling point in the development of carbon-based electronics and sensors with the promise of further development into wearable devices. Semiconducting single-walled carbon nanotubes (SWNTs) lend themselves well to applications requiring flexibility while achieving high-performance. Our previous work has demonstrated a tri-layer polymer dielectric composed of poly(lactic acid) (PLA), poly(vinyl alcohol) with cellulose nanocrystals (PVAc), and toluene diisocyanate-terminated poly(caprolactone) (TPCL), yielding an environmentally benign and solution-processable n-type thin-film transistor (TFT). Despite the potential for fabrication on flexible substrates, these devices were only characterized on rigid substrates. We present herein the fabrication of these TFTs on Kapton® substrates and a progression of the devices' n- and p-type operation over 7 days, demonstrating continuous loss of the n-type performance and relative stability of the p-type performance after 3 days in ambient air. The tri-layer dielectric is then applied in an electrolyte-gated SWNT field-effect transistor (EG-SWNT-FET) architecture, shielding the SWNTs from the electrolyte and allowing for width-normalised g m values of 0.0563 ± 0.0263 μS μm-1 and I ON/OFF ratios of 103-104 using de-ionized (DI) water as the electrolyte. Finally, as a proof of concept, the device was used to detect α-synuclein, a neuronal protein whose aggregation is associated with Parkinson's disease, in DI water through the immobilization of target specific aptamer molecules on the polymer layer covering the gate electrode.
Collapse
Affiliation(s)
- May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
| | - Roslyn S Massey
- Department of Electronics Engineering, Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - Ravi Prakash
- Department of Electronics Engineering, Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa Ontario K1N 6N5 Canada
- School of Electrical Engineering and Computer Science, University of Ottawa 800 King Edward Ave. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
2
|
Moslehi S, Rowland C, Smith JH, Watterson WJ, Griffiths W, Montgomery RD, Philliber S, Marlow CA, Perez MT, Taylor RP. Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties. ADVANCES IN NEUROBIOLOGY 2024; 36:849-875. [PMID: 38468067 DOI: 10.1007/978-3-031-47606-8_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Imagine a world in which damaged parts of the body - an arm, an eye, and ultimately a region of the brain - can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of human life would revolutionize the medical world and produce sweeping changes across society. In this chapter, we discuss several approaches to the fabrication of fractal electronics designed to interface with neural networks. We consider two fundamental functions - stimulating electrical signals in the neural networks and sensing the location of the signals as they pass through the network. Using experiments and simulations, we discuss the favorable electrical performances that arise from adopting fractal rather than traditional Euclidean architectures. We also demonstrate how the fractal architecture induces favorable physical interactions with the cells they interact with, including the ability to direct the growth of neurons and glia to specific regions of the neural-electronic interface.
Collapse
Affiliation(s)
- S Moslehi
- Physics Department, University of Oregon, Eugene, OR, USA
| | - C Rowland
- Physics Department, University of Oregon, Eugene, OR, USA
| | - J H Smith
- Physics Department, University of Oregon, Eugene, OR, USA
| | - W J Watterson
- Physics Department, University of Oregon, Eugene, OR, USA
| | - W Griffiths
- Physics Department, University of Oregon, Eugene, OR, USA
| | - R D Montgomery
- Physics Department, University of Oregon, Eugene, OR, USA
| | - S Philliber
- Physics Department, University of Oregon, Eugene, OR, USA
| | - C A Marlow
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - M-T Perez
- Department of Clinical Sciences Lund, Division of Ophthalmology, Lund University, Lund, Sweden
| | - R P Taylor
- Physics Department, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
3
|
Nakano-Baker O, Fong H, Shukla S, Lee RV, Cai L, Godin D, Hennig T, Rath S, Novosselov I, Dogan S, Sarikaya M, MacKenzie JD. Data-driven design of a multiplexed, peptide-sensitized transistor to detect breath VOC markers of COVID-19. Biosens Bioelectron 2023; 229:115237. [PMID: 36965380 PMCID: PMC10027305 DOI: 10.1016/j.bios.2023.115237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Exhaled human breath contains a rich mixture of volatile organic compounds (VOCs) whose concentration can vary in response to disease or other stressors. Using simulated odorant-binding proteins (OBPs) and machine learning methods, we designed a multiplex of short VOC- and carbon-binding peptide probes that detect a characteristic "VOC fingerprint". Specifically, we target VOCs associated with COVID-19 in a compact, molecular sensor array that directly transduces vapor composition into multi-channel electrical signals. Rapidly synthesizable, chimeric VOC- and solid-binding peptides were derived from selected OBPs using multi-sequence alignment with protein database structures. Selective peptide binding to targeted VOCs and sensor surfaces was validated using surface plasmon resonance spectroscopy and quartz crystal microbalance. VOC sensing was demonstrated by peptide-sensitized, exposed-channel carbon nanotube transistors. The data-to-device pipeline enables the development of novel devices for non-invasive monitoring, diagnostics of diseases, and environmental exposure assessment.
Collapse
Affiliation(s)
| | - Hanson Fong
- University of Washington Dept. of Materials Science and Engineering, USA
| | | | - Richard V Lee
- University of Washington Dept. of Materials Science and Engineering, USA
| | - Le Cai
- University of Washington Dept. of Materials Science and Engineering, USA
| | - Dennis Godin
- University of Washington Dept. of Biochemistry, USA
| | - Tatum Hennig
- University of Washington Dept. of Atmospheric Chemistry, USA
| | - Siddharth Rath
- University of Washington Dept. of Materials Science and Engineering, USA
| | - Igor Novosselov
- University of Washington Depts. of Mechanical Engineering, Occupational and Environmental Health Sciences, USA
| | - Sami Dogan
- University of Washington School of Dentistry, USA
| | - Mehmet Sarikaya
- University of Washington Depts. of Materials Science and Engineering, Chemical Engineering, Oral Health Sciences, USA
| | - J Devin MacKenzie
- University of Washington Depts. of Materials Science and Engineering, Mechanical Engineering, USA
| |
Collapse
|
4
|
Li Z, Xiao M, Jin C, Zhang Z. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors. BIOSENSORS 2023; 13:326. [PMID: 36979538 PMCID: PMC10046102 DOI: 10.3390/bios13030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The development of biosensors based on field-effect transistors (FETs) using atomically thick carbon nanotubes (CNTs) as a channel material has the potential to revolutionize the related field due to their small size, high sensitivity, label-free detection, and real-time monitoring capabilities. Despite extensive research efforts to improve the sensitivity, selectivity, and practicality of CNT FET-based biosensors, their commercialization has not yet been achieved due to the non-uniform and unstable device performance, difficulties in their fabrication, the immaturity of sensor packaging processes, and a lack of reliable modification methods. This review article focuses on the practical applications of CNT-based FET biosensors for the detection of ultra-low concentrations of biologically relevant molecules. We discuss the various factors that affect the sensors' performance in terms of materials, device architecture, and sensor packaging, highlighting the need for a robust commercial process that prioritizes product performance. Additionally, we review recent advances in the application of CNT FET biosensors for the ultra-sensitive detection of various biomarkers. Finally, we examine the key obstacles that currently hinder the large-scale deployment of these biosensors, aiming to identify the challenges that must be addressed for the future industrialization of CNT FET sensors.
Collapse
Affiliation(s)
- Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Jihua Laboratory, Foshan 528200, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| |
Collapse
|
5
|
Abiram G, Gourji FH, Pitchaiya S, Ravirajan P, Murugathas T, Velauthapillai D. Air processed Cs 2AgBiBr 6 lead-free double perovskite high-mobility thin-film field-effect transistors. Sci Rep 2022; 12:2455. [PMID: 35165320 PMCID: PMC8844394 DOI: 10.1038/s41598-022-06319-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
This study focuses on the fabrication and characterization of Cs2AgBiBr6 double perovskite thin film for field-effect transistor (FET) applications. The Cs2AgBiBr6 thin films were fabricated using a solution process technique and the observed XRD patterns demonstrate no diffraction peaks of secondary phases, which confirm the phase-pure crystalline nature. The average grain sizes of the spin-deposited film were also calculated by analysing the statistics of grain size in the SEM image and was found to be around 412 (± 44) nm, and larger grain size was also confirmed by the XRD measurements. FETs with different channel lengths of Cs2AgBiBr6 thin films were fabricated, under ambient conditions, on heavily doped p-type Si substrate with a 300 nm thermally grown SiO2 dielectric. The fabricated Cs2AgBiBr6 FETs showed a p-type nature with a positive threshold voltage. The on-current, threshold voltage and hole-mobility of the FETs decreased with increasing channel length. A high average hole mobility of 0.29 cm2 s-1 V-1 was obtained for the FETs with a channel length of 30 µm, and the hole-mobility was reduced by an order of magnitude (0.012 cm2 s-1 V-1) when the channel length was doubled. The on-current and hole-mobility of Cs2AgBiBr6 FETs followed a power fit, which confirmed the dominance of channel length in electrostatic gating in Cs2AgBiBr6 FETs. A very high-hole mobility observed in FET could be attributed to the much larger grain size of the Cs2AgBiBr6 film made in this work.
Collapse
Affiliation(s)
- Gnanasampanthan Abiram
- Department of Physics, Faculty of Science, University of Jaffna, Jaffna, 40000, Sri Lanka
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway
| | - Fatemeh Heidari Gourji
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway
| | - Selvakumar Pitchaiya
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway
| | | | | | - Dhayalan Velauthapillai
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway.
| |
Collapse
|
6
|
Shao W, Shurin GV, He X, Zeng Z, Shurin MR, Star A. Cerebrospinal Fluid Leak Detection with a Carbon Nanotube-Based Field-Effect Transistor Biosensing Platform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1684-1691. [PMID: 34932323 DOI: 10.1021/acsami.1c19120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cerebrospinal fluid (CSF) leakage may lead to life-threatening complications if not detected promptly. However, gel electrophoresis, the gold-standard test for confirming CSF leakage by detecting beta2-transferrin (β2-Tf), requires 3-6 h and is labor-intensive. We developed a new β2-Tf detection platform for rapid identification of CSF leakage. The three-step design, which includes two steps of affinity chromatography and a rapid sensing step using a semiconductor-enriched single-walled carbon nanotube field-effect transistor (FET) sensor, circumvented the lack of selectivity that antitransferrin antibody exhibits for transferrin isoforms and markedly shortened the detection time. Furthermore, three different sensing configurations for the FET sensor were investigated for obtaining the optimal β2-Tf sensing results. Finally, body fluid (CSF and serum) tests employing our three-step strategy demonstrated high sensitivity, suggesting its potential to be used as a rapid diagnostic tool for CSF leakage.
Collapse
Affiliation(s)
- Wenting Shao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15260, United States
| | - Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
7
|
Thanihaichelvan M, Surendran S, Kumanan T, Sutharsini U, Ravirajan P, Valluvan R, Tharsika T. Selective and electronic detection of COVID-19 (Coronavirus) using carbon nanotube field effect transistor-based biosensor: A proof-of-concept study. MATERIALS TODAY. PROCEEDINGS 2022; 49:2546-2549. [PMID: 33996512 PMCID: PMC8106884 DOI: 10.1016/j.matpr.2021.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we propose and demonstrate a carbon nanotube (CNT) field-effect transistor (FET) based biosensor for selective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CNT FETs were fabricated on a flexible Kapton substrate and the sensor was fabricated by immobilizing the reverse sequence of the RNA-dependent RNA polymerase gene of SARS-CoV-2 onto the CNT channel. The biosensors were tested for the synthetic positive and control target sequences. The biosensor showed a selective sensing response to the positive target sequence with a limit of detection of 10 fM. The promising results from our study suggest that the CNT FET based biosensors can be used as a diagnostic tool for the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- M. Thanihaichelvan
- Department of Physics, Faculty of Science, University of Jaffna, Jaffna 40000, Sri Lanka,Corresponding Author: Senior Lecturer in Physics, Department of Physics, University of Jaffna, Jaffna 40000, Sri Lanka., Principal Investigator of research grant RG/COVID/2020/HS/02 from National Science Foundation, Sri Lanka
| | - S.N. Surendran
- Department of Zoology, Faculty of Science, University of Jaffna, Jaffna 40000, Sri Lanka
| | - T. Kumanan
- Department of Medicine, Faculty of Medicine, University of Jaffna, Jaffna 40000, Sri Lanka
| | - U. Sutharsini
- Department of Physics, Faculty of Science, University of Jaffna, Jaffna 40000, Sri Lanka
| | - P. Ravirajan
- Department of Physics, Faculty of Science, University of Jaffna, Jaffna 40000, Sri Lanka
| | - R. Valluvan
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Jaffna, Ariviyal Nagar, Kilinochchi 44000, Sri Lanka
| | - T. Tharsika
- Department of Interdisciplinary Studies, Faculty of Engineering, University of Jaffna, Ariviyal Nagar, Kilinochchi 44000, Sri Lanka
| |
Collapse
|
8
|
Ailenei AE, Beu TA. Ion transport through gated carbon nanotubes: Molecular dynamics simulations using polarizable water. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Halima HB, Errachid A, Jaffrezic‐Renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamdi Ben Halima
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | - Abdelhamid Errachid
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | | |
Collapse
|
10
|
Cheema JA, Carraher C, Plank NOV, Travas-Sejdic J, Kralicek A. Insect odorant receptor-based biosensors: Current status and prospects. Biotechnol Adv 2021; 53:107840. [PMID: 34606949 DOI: 10.1016/j.biotechadv.2021.107840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell. This is because the sensing challenge is not trivial as it involves navigating a chemosensory space comprising thousands of volatile organic compounds. Distinct aroma recognition is based on detecting unique combinations of volatile organic compounds. In natural olfactory systems this is accomplished by employing odorant receptors (ORs) with varying specificities, together with combinatorial neural coding mechanisms. Attempts to mimic the remarkable sensitivity and accuracy of natural olfactory systems has therefore been challenging. Current portable chemical sensors for odorant detection are neither sensitive nor selective, prompting research exploring artificial olfactory devices that use natural OR proteins for sensing. Much research activity to develop OR based biosensors has concentrated on mammalian ORs, however, insect ORs have not been explored as extensively. Insects possess an extraordinary sense of smell due to a repertoire of odorant receptors evolved to interpret olfactory cues vital to the insects' survival. The potential of insect ORs as sensing elements is only now being unlocked through recent research efforts to understand their structure, ligand binding mechanisms and development of odorant biosensors. Like their mammalian counterparts, there are many challenges with working with insect ORs. These include expression, purification and presentation of the insect OR in a stable display format compatible with an effective transduction methodology while maintaining OR structure and function. Despite these challenges, significant progress has been demonstrated in developing OR-based biosensors which exploit insect ORs in cells, lipid bilayers, liposomes and nanodisc formats. Ultrasensitive and highly selective detection of volatile organic compounds has been validated by coupling these insect OR display formats with transduction methodologies spanning optical (fluorescence) and electrical (field effect transistors, electrochemical impedance spectroscopy) techniques. This review summarizes the current status of insect OR based biosensors and their future outlook.
Collapse
Affiliation(s)
- Jamal Ahmed Cheema
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Natalie O V Plank
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; Scentian Bio Limited, 1c Goring Road, Sandringham, Auckland 1025, New Zealand.
| |
Collapse
|
11
|
Comparison of Duplex and Quadruplex Folding Structure Adenosine Aptamers for Carbon Nanotube Field Effect Transistor Aptasensors. NANOMATERIALS 2021; 11:nano11092280. [PMID: 34578596 PMCID: PMC8468449 DOI: 10.3390/nano11092280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Carbon nanotube field effect transistor (CNT FET) aptasensors have been investigated for the detection of adenosine using two different aptamer sequences, a 35-mer and a 27-mer. We found limits of detection for adenosine of 100 pM and 320 nM for the 35-mer and 27-mer aptamers, with dissociation constants of 1.2 nM and 160 nM, respectively. Upon analyte recognition the 35-mer adenosine aptamer adopts a compact G-quadruplex structure while the 27-mer adenosine aptamer changes to a folded duplex. Using the CNT FET aptasensor platform adenosine could be detected with high sensitivity over the range of 100 pM to 10 µM, highlighting the suitability of the CNT FET aptasensor platform for high performance adenosine detection. The aptamer restructuring format is critical for high sensitivity with the G-quadraplex aptasensor having a 130-fold smaller dissociation constant than the duplex forming aptasensor.
Collapse
|
12
|
Browning LA, Watterson W, Happe E, Silva S, Abril Valenzuela R, Smith J, Dierkes MP, Taylor RP, Plank NOV, Marlow CA. Investigation of Fractal Carbon Nanotube Networks for Biophilic Neural Sensing Applications. NANOMATERIALS 2021; 11:nano11030636. [PMID: 33806365 PMCID: PMC8000135 DOI: 10.3390/nano11030636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
We propose a carbon-nanotube-based neural sensor designed to exploit the electrical sensitivity of an inhomogeneous fractal network of conducting channels. This network forms the active layer of a multi-electrode field effect transistor that in future applications will be gated by the electrical potential associated with neuronal signals. Using a combination of simulated and fabricated networks, we show that thin films of randomly-arranged carbon nanotubes (CNTs) self-assemble into a network featuring statistical fractal characteristics. The extent to which the network's non-linear responses will generate a superior detection of the neuron's signal is expected to depend on both the CNT electrical properties and the geometric properties of the assembled network. We therefore perform exploratory experiments that use metallic gates to mimic the potentials generated by neurons. We demonstrate that the fractal scaling properties of the network, along with their intrinsic asymmetry, generate electrical signatures that depend on the potential's location. We discuss how these properties can be exploited for future neural sensors.
Collapse
Affiliation(s)
- Leo A. Browning
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand; (L.A.B.); (E.H.); (N.O.V.P.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6021, New Zealand
| | - William Watterson
- Materials Science Institute, Physics Department, University of Oregon, Eugene, OR 97403-1274, USA; (W.W.); (J.S.); (R.P.T.)
| | - Erica Happe
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand; (L.A.B.); (E.H.); (N.O.V.P.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6021, New Zealand
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.S.); (R.A.V.); (M.P.D.)
| | - Savannah Silva
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.S.); (R.A.V.); (M.P.D.)
| | - Roberto Abril Valenzuela
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.S.); (R.A.V.); (M.P.D.)
| | - Julian Smith
- Materials Science Institute, Physics Department, University of Oregon, Eugene, OR 97403-1274, USA; (W.W.); (J.S.); (R.P.T.)
| | - Marissa P. Dierkes
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.S.); (R.A.V.); (M.P.D.)
| | - Richard P. Taylor
- Materials Science Institute, Physics Department, University of Oregon, Eugene, OR 97403-1274, USA; (W.W.); (J.S.); (R.P.T.)
| | - Natalie O. V. Plank
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand; (L.A.B.); (E.H.); (N.O.V.P.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Colleen A. Marlow
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.S.); (R.A.V.); (M.P.D.)
- Correspondence:
| |
Collapse
|
13
|
Shao W, Shurin MR, Wheeler SE, He X, Star A. Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10321-10327. [PMID: 33596036 PMCID: PMC7901236 DOI: 10.1021/acsami.0c22589] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 05/20/2023]
Abstract
Early diagnosis of SARS-CoV-2 infection is critical for facilitating proper containment procedures, and a rapid, sensitive antigen assay is a critical step in curbing the pandemic. In this work, we report the use of a high-purity semiconducting (sc) single-walled carbon nanotube (SWCNT)-based field-effect transistor (FET) decorated with specific binding chemistry to assess the presence of SARS-CoV-2 antigens in clinical nasopharyngeal samples. Our SWCNT FET sensors, with functionalization of the anti-SARS-CoV-2 spike protein antibody (SAb) and anti-nucleocapsid protein antibody, detected the S antigen (SAg) and N antigen (NAg), reaching a limit of detection of 0.55 fg/mL for SAg and 0.016 fg/mL for NAg in calibration samples. SAb-functionalized FET sensors also exhibited good sensing performance in discriminating positive and negative clinical samples, indicating a proof of principle for use as a rapid COVID-19 antigen diagnostic tool with high analytical sensitivity and specificity at low cost.
Collapse
Affiliation(s)
- Wenting Shao
- Department of Chemistry,
University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, United States
| | - Michael R. Shurin
- Department of Pathology,
University of Pittsburgh Medical
Center, Pittsburgh, Pennsylvania 15260,
United States
| | - Sarah E. Wheeler
- Department of Pathology,
University of Pittsburgh Medical
Center, Pittsburgh, Pennsylvania 15260,
United States
| | - Xiaoyun He
- Department of Chemistry,
University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry,
University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, United States
- Department of Bioengineering,
University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, United States
| |
Collapse
|
14
|
Shao W, Burkert SC, White DL, Scott VL, Ding J, Li Z, Ouyang J, Lapointe F, Malenfant PRL, Islam K, Star A. Probing Ca 2+-induced conformational change of calmodulin with gold nanoparticle-decorated single-walled carbon nanotube field-effect transistors. NANOSCALE 2019; 11:13397-13406. [PMID: 31276143 DOI: 10.1039/c9nr03132d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomaterials are ideal for electrochemical biosensors, with their nanoscale dimensions enabling the sensitive probing of biomolecular interactions. In this study, we compare field-effect transistors (FET) comprised of unsorted (un-) and semiconducting-enriched (sc-) single-walled carbon nanotubes (SWCNTs). un-SWCNTs have both metallic and semiconducting SWCNTs in the ensemble, while sc-SWCNTs have a >99.9% purity of semiconducting nanotubes. Both SWCNT FET devices were decorated with gold nanoparticles (AuNPs) and were then employed in investigating the Ca2+-induced conformational change of calmodulin (CaM) - a vital process in calcium signal transduction in the human body. Different biosensing behavior was observed from FET characteristics of the two types of SWCNTs, with sc-SWCNT FET devices displaying better sensing performance with a dynamic range from 10-15 M to 10-13 M Ca2+, and a lower limit of detection at 10-15 M Ca2+.
Collapse
Affiliation(s)
- Wenting Shao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Valerie L Scott
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Jianfu Ding
- Security and Disruptive Technologies Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Zhao Li
- Security and Disruptive Technologies Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Jianying Ouyang
- Security and Disruptive Technologies Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - François Lapointe
- Security and Disruptive Technologies Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Patrick R L Malenfant
- Security and Disruptive Technologies Portfolio, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
15
|
Murugathas T, Zheng HY, Colbert D, Kralicek AV, Carraher C, Plank NOV. Biosensing with Insect Odorant Receptor Nanodiscs and Carbon Nanotube Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9530-9538. [PMID: 30740970 DOI: 10.1021/acsami.8b19433] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Insect odorant receptors have been reconstituted into lipid nanodiscs and tethered to carbon nanotube field-effect transistors to function as a biosensor. Here, four different insect odorant receptors (ORs) from Drosophila melanogaster (DmelOR10a, DmelOR22a, DmelOR35a, and DmelOR71a) were expressed in Sf9 cells, purified, and reconstituted into lipid nanodiscs. We have demonstrated that each of these ORs produce a selective and highly sensitive electrical response to their respective positive ligands, methyl salicylate, methyl hexanoate, trans-2-hexen-1-al, and 4-ethylguaiacol, with limits of detection in the low femtomolar range. No detection was observed for each OR against control ligands, and empty nanodiscs showed no specific sensor signal for any of the odorant molecules. Our results are the first evidence that insect ORs can be integrated into lipid nanodiscs and used as primary sensing elements for bioelectronic nose technologies.
Collapse
Affiliation(s)
- Thanihaichelvan Murugathas
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
- Department of Physics , University of Jaffna , Jaffna 40000 , Sri Lanka
| | - Han Yue Zheng
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
| | - Damon Colbert
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Ltd. , Auckland 1142 , New Zealand
| | - Natalie O V Plank
- School of Chemical and Physical Sciences , Victoria University of Wellington , Wellington 6021 , New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6021 , New Zealand
| |
Collapse
|
16
|
Thanihaichelvan M, Browning LA, Dierkes MP, Reyes RM, Kralicek AV, Carraher C, Marlow CA, Plank NOV. Data on liquid gated CNT network FETs on flexible substrates. Data Brief 2018; 21:276-283. [PMID: 30364623 PMCID: PMC6197376 DOI: 10.1016/j.dib.2018.09.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/11/2018] [Accepted: 09/30/2018] [Indexed: 01/31/2023] Open
Abstract
This article presents the raw and analyzed data from a set of experiments performed to study the role of junctions on the electrostatic gating of carbon nanotube (CNT) network field effect transistor (FET) aptasensors. It consists of the raw data used for the calculation of junction and bundle densities and describes the calculation of metallic content of the bundles. In addition, the data set consists of the electrical measurement data in a liquid gated environment for 119 different devices with four different CNT densities and summarizes their electrical properties. The data presented in this article are related to research article titled “Metallic-semiconducting junctions create sensing hot-spots in carbon nanotube FET aptasensors near percolation” (doi:10.1016/j.bios.2018.09.021) [1].
Collapse
Affiliation(s)
- Murugathas Thanihaichelvan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.,Department of Physics, University of Jaffna, Jaffna 40000, Sri Lanka
| | - Leo A Browning
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Marissa P Dierkes
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Roger Martinez Reyes
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Colleen A Marlow
- Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Natalie O V Plank
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|