1
|
Kang Z, Wang Y, Song H, Wang X, Zhang YHPJ, Zhu Z. A wearable and flexible lactic-acid/O 2 biofuel cell with an enhanced air-breathing biocathode. Biosens Bioelectron 2024; 246:115845. [PMID: 38008057 DOI: 10.1016/j.bios.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
The performance of biocathode in an enzymatic biofuel cell (EBFC) in the real application is somehow overlooked. Herein, a wearable and flexible lactic-acid/O2 EBFC enhanced with an air-breathing biocathode is designed to solve the limitation of biocathode that arises from the low solubility and slow mass transfer of the dissolved oxygen. To improve the oxygen supply efficiency for the air-breathing biocathode, a superhydrophobic base electrode creating an efficient air-solid-liquid triphase interface is developed. The designed EBFC with an 'island-bridge' configuration is integrated by assembling the current collectors of air-breathing biocathode and bioanode on a commercial laminating film (LF) screen-printed with a noninterfering circuit. It is found that the biocathode/bioanode area ratio should exceed 9:1 so that the designed EBFC (1A//9C) can achieve the optimal performance. This EBFC delivers an open circuit voltage of ca. 0.75 V and outputs a maximum power density of ca. 1.78 mW cm-2. In addition, a scaled-up EBFC (total bioanode area: 1.5 cm2) successfully powers a self-developed low-power device of heartrate in the pulse operation mode when applied on a volunteer's arm.
Collapse
Affiliation(s)
- Zepeng Kang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Yuanming Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Haiyan Song
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Xueli Wang
- National Human Genetic Resources Center, Beijing 102206, PR China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Zhiguang Zhu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China.
| |
Collapse
|
2
|
Cao L, Chen J, Pang J, Qu H, Liu J, Gao J. Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors. Molecules 2024; 29:257. [PMID: 38202838 PMCID: PMC10780655 DOI: 10.3390/molecules29010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Enzyme biofuel cells (EBFCs) can convert chemical or biochemical energy in fuel into electrical energy, and therefore have received widespread attention. EBFCs have advantages that traditional fuel cells cannot match, such as a wide range of fuel sources, environmental friendliness, and mild reaction conditions. At present, research on EBFCs mainly focuses on two aspects: one is the use of nanomaterials with excellent properties to construct high-performance EBFCs, and the other is self-powered sensors based on EBFCs. This article reviews the applied nanomaterials based on the working principle of EBFCs, analyzes the design ideas of self-powered sensors based on enzyme biofuel cells, and looks forward to their future research directions and application prospects. This article also points out the key properties of nanomaterials in EBFCs, such as electronic conductivity, biocompatibility, and catalytic activity. And the research on EBFCs is classified according to different research goals, such as improving battery efficiency, expanding the fuel range, and achieving self-powered sensors.
Collapse
Affiliation(s)
- Lili Cao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.C.); (J.P.); (H.Q.); (J.L.); (J.G.)
| | | | | | | | | | | |
Collapse
|
3
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
4
|
A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nat Commun 2022; 13:5608. [PMID: 36153325 PMCID: PMC9509365 DOI: 10.1038/s41467-022-33358-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMarine microbial ecosystems can be viewed as a huge ocean-battery charged by solar energy. It provides a model for fabricating bio-solar cell, a bioelectrochemical system that converts light into electricity. Here, we fabricate a bio-solar cell consisting of a four-species microbial community by mimicking the ecological structure of marine microbial ecosystems. We demonstrate such ecological structure consisting of primary producer, primary degrader, and ultimate consumers is essential for achieving high power density and stability. Furthermore, the four-species microbial community is assembled into a spatial-temporally compacted cell using conductive hydrogel as a sediment-like anaerobic matrix, forming a miniaturized bionic ocean-battery. This battery directly converts light into electricity with a maximum power of 380 μW and stably operates for over one month. Reproducing the photoelectric conversion function of marine microbial ecosystems in this bionic battery overcomes the sluggish and network-like electron transfer, showing the biotechnological potential of synthetic microbial ecology.
Collapse
|
5
|
Kausaite-Minkstimiene A, Kaminskas A, Ramanaviciene A. Development of a membraneless single-enzyme biofuel cell powered by glucose. Biosens Bioelectron 2022; 216:114657. [DOI: 10.1016/j.bios.2022.114657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
6
|
Antonio JR, Franco JH, Almeida PZ, Almeida TS, Teixeira de Morais Polizeli MDL, Minteer SD, Rodrigues de Andrade A. Carbon Nanotube PtSn Nanoparticles for Enhanced Complete Biocatalytic Oxidation of Ethylene Glycol in Biofuel Cells. ACS MATERIALS AU 2021; 2:94-102. [PMID: 36855769 PMCID: PMC9888613 DOI: 10.1021/acsmaterialsau.1c00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a hybrid catalytic system containing metallic PtSn nanoparticles deposited on multiwalled carbon nanotubes (Pt65Sn35/MWCNTs), prepared by the microwave-assisted method, coupled to the enzyme oxalate oxidase (OxOx) for complete ethylene glycol (EG) electrooxidation. Pt65Sn35/MWCNTs, without OxOx, showed good electrochemical activity toward EG oxidation and all the byproducts. Pt65Sn35/MWCNTs cleaved the glyoxilic acid C-C bond, producing CO2 and formic acid, which was further oxidized at the electrode. Concerning EG oxidation, the catalytic activity of the hybrid system (Pt65Sn35/MWCNTs+OxOx) was twice the catalytic activity of Pt65Sn35/MWCNTs. Long-term electrolysis revealed that Pt65Sn35/MWCNTs+OxOx was much more active for EG oxidation than Pt65Sn35/MWCNTs: the charge increased by 65%. The chromatographic results proved that Pt65Sn35/MWCNTs+OxOx collected all of the 10 electrons per molecule of the fuel and was able to catalyze EG oxidation to CO2 due to the associative oxidation between the metallic nanoparticles and the enzymatic pathway. Overall, Pt65Sn35/MWCNTs+OxOx proved to be a promising system to enhance the development of enzymatic biofuel cells for further application in the bioelectrochemistry field.
Collapse
Affiliation(s)
- Jesimiel
Glaycon Rodrigues Antonio
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Jefferson Honorio Franco
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Paula Z. Almeida
- Department
of Biology, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Thiago S. Almeida
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil,Department
of Chemistry, Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, 38280-000, Iturama, MG, Brazil
| | | | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - Adalgisa Rodrigues de Andrade
- Department
of Chemistry, Faculty of Philosophy Sciences and Letters at Ribeirão
Preto, University of São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil,. Tel.: +55-16-3315-3725
| |
Collapse
|
7
|
Kausaite-Minkstimiene A, Kaminskas A, Popov A, Ramanavicius A, Ramanaviciene A. Development of a new biocathode for a single enzyme biofuel cell fuelled by glucose. Sci Rep 2021; 11:18568. [PMID: 34535709 PMCID: PMC8448768 DOI: 10.1038/s41598-021-97488-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
In this study, we reported the development of Prussian blue (PB), poly(pyrrole-2-carboxylic acid) (PPCA), and glucose oxidase (GOx) biocomposite modified graphite rod (GR) electrode as a potential biocathode for single enzyme biofuel cell fuelled by glucose. In order to design the biocathode, the GR electrode was coated with a composite of PB particles embedded in the PPCA shell and an additional layer of PPCA by cyclic voltammetry. Meanwhile, GOx molecules were covalently attached to the carboxyl groups of PPCA by an amide bond. The optimal conditions for the biocathode preparation were elaborated experimentally. After optimization, the developed biocathode showed excellent electrocatalytic activity toward the reduction of H2O2 formed during GOx catalyzed glucose oxidation at a low potential of 0.1 V vs Ag/AgCl, as well as good electrochemical performance. An electrocatalytic current density of 31.68 ± 2.70 μA/cm2 and open-circuit potential (OCP) of 293.34 ± 15.70 mV in O2-saturated 10 mM glucose solution at pH 6.0 were recorded. A maximal OCP of 430.15 ± 15.10 mV was recorded at 98.86 mM of glucose. In addition, the biocathode showed good operational stability, maintaining 95.53 ± 0.15% of the initial response after 14 days. These results suggest that this simply designed biocathode can be applied to the construction of a glucose-powered single enzyme biofuel cell.
Collapse
Affiliation(s)
- Asta Kausaite-Minkstimiene
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania.
| | - Algimantas Kaminskas
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania
| | - Anton Popov
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania
| | - Almira Ramanaviciene
- Nanotechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
8
|
Mini-Review: Recent Technologies of Electrode and System in the Enzymatic Biofuel Cell (EBFC). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic biofuel cells (EBFCs) is one of the branches of fuel cells that can provide high potential for various applications. However, EBFC has challenges in improving the performance power output. Exploring electrode materials is one way to increase enzyme utilization and lead to a high conversion rate so that efficient enzyme loading on the electrode surface can function correctly. This paper briefly presents recent technologies developed to improve bio-catalytic properties, biocompatibility, biodegradability, implantability, and mechanical flexibility in EBFCs. Among the combinations of materials that can be studied and are interesting because of their properties, there are various nanoparticles, carbon-based materials, and conductive polymers; all three have the advantages of chemical stability and enhanced electron transfer. The methods to immobilize enzymes, and support and substrate issues are also covered in this paper. In addition, the EBFC system is also explored and developed as suitable for applications such as self-pumping and microfluidic EBFC.
Collapse
|
9
|
Wu Z, Li Z, Li G, Zheng X, Su Y, Yang Y, Liao Y, Hu Z. DNA derived N-doped 3D conductive network with enhanced electrocatalytic activity and stability for membrane-less biofuel cells. Anal Chim Acta 2021; 1165:338546. [PMID: 33975693 DOI: 10.1016/j.aca.2021.338546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 11/15/2022]
Abstract
Enzymes are promising electrocatalysts in many biological processes. We proposed two strategies, co-immobilization and three-dimensional (3D) space design, to strengthen electron transfer (ET). In this research, DNA base and CNT were mixed in an aqueous solution; then the mixture was dried and ground. Finally, the powder was annealed in N2 to obtain DNA derived N-doped 3D conductive network (N-G@CNT). N-G@CNT immobilized mediators on itself through adsorption. Such 3D space structure shows high activity toward a set of critical electrochemical reactions and high-performance in enzymatic biofuel cells (EBFCs). It is found that N-G@CNT conductive network possesses an interconnected porous structure and well-developed porosity. As a result, the membrane-less EBFCs equipped with enzyme/mediator co-immobilization N-G@CNT bioelectrodes were measured in a model 5 mM glucose-containing aqueous solution, human serum, and rabbit whole blood, respectively, which can generate 0.34, 0.078, and 0.15 mW cm-2 power density, respectively. The constant-current discharge method carried out in a model 5 mM glucose-containing aqueous solution shows that the discharge time reached 19 h at a discharge current density of 0.01 mA cm-2. The membrane EBFCs can deliver a high open circuit voltage of 0.68 V, a short-circuit current density of 2 mA cm-2, and a maximum power density of 0.5 mW cm-2.
Collapse
Affiliation(s)
- Zhongdong Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Gangyong Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xuchao Zheng
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Yuhe Su
- School of Life Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yan Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Youwei Liao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
10
|
Yu S, Myung NV. Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. Front Chem 2021; 8:620153. [PMID: 33644003 PMCID: PMC7902792 DOI: 10.3389/fchem.2020.620153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.
Collapse
Affiliation(s)
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
11
|
Rational design of electroactive redox enzyme nanocapsules for high-performance biosensors and enzymatic biofuel cell. Biosens Bioelectron 2020; 174:112805. [PMID: 33257186 DOI: 10.1016/j.bios.2020.112805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
The potential application of biodevices based on enzymatic bioelectrocatalysis are limited by poor stability and electrochemical performance. To solve the limitation, modifying enzyme with functional polymer to tailor enzyme function is highly desirable. Herein, glucose oxidase (GOx) was chosen as a model enzyme, and according to the chemical structure of GOx cofactor (flavin adenine dinucleotide, FAD), we customize a biomimetic cofactor containing vinyl group (SFAD) for GOx, and prepared an GOx nanocapsule via in-situ polymerization. The characterization of particle size distribution, TEM, fluorescence and electrochemical performance indicated the successful formation of electroactive GOx nanocapsule with SFAD-containing polymeric network (n (GOx-SFAD-PAM)). The network can act as an electronic "highway" to link the active site with electrode, with capability to accelerate electron transfer as well as enhanced GOx stability. Further investigation of bioelectrocatalysis shows that n (GOx-SFAD-PAM)-based biosensor has low detection potential (-0.4 vs. Ag/AgCl), high sensitivity (64.97 μAmM-1cm-2), good anti-interference performance, quick response (3⁓5s) and excellent stability, and that n (GOx-SFAD-PAM)-based enzymatic biofuel cell (EBFC) has the high maximum power density (1011.21 μWcm-2), which is a 385-fold increase over that of native GOx-based EBFC (2.62 μWcm-2). This study suggests that novel enzyme nanocapsule with electroactive polymeric shell might provide a prospective solution for the performance improvement of enzymatic bioelectrocatalysis-based biodevices.
Collapse
|
12
|
Minisy IM, Bober P, Šeděnková I, Stejskal J. Methyl red dye in the tuning of polypyrrole conductivity. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Optimization of rGO-PEI/Naph-SH/AgNWs/Frt/GOx nanocomposite anode for biofuel cell applications. Sci Rep 2020; 10:8919. [PMID: 32488131 PMCID: PMC7265384 DOI: 10.1038/s41598-020-65712-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
The present study reports a new nanocomposite design using surface modified silver nanowires decorated on the surface of polyethyleneimine (PEI), a cationic polymer acting as glue for anchoring nanowires and reduced graphene oxide (rGO). The synthesized nanocomposite was employed as a promising electrode material for immobilization of biomolecules and effective transportation of electron, in enzymatic biofuel cell (EBFCs) application. The synthesized nanocomposite was confirmed by analytical techniques, for instance, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The electrochemical behaviour of the nanobioelectrocatalysts rGO-PEI/Frt/GOx, rGO-PEI/AgNWs/Frt/GOx, and rGO-PEI/Naph-SH/AgNWs/Frt/GOx was determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). The maximum current density obtained by the modified bioanode was found to be 19.9 mA cm−2 at the limiting glucose concentration of 50 mM in PBS (pH 7.0) as supporting electrolyte at a scan rate of 100 mVs−1.
Collapse
|
14
|
Ma C, Liu M, You C, Zhu Z. Engineering a diaphorase via directed evolution for enzymatic biofuel cell application. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00311-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Diaphorase (DI) has received wide attention as the key anodic enzyme mediating the electron transfer and electric energy generation in enzymatic biofuel cells (EBFCs). Lowering the anodic pH may be a useful strategy for constructing high-performance in EBFCs. However, most DI suffered from the poor activity at low pHs. Therefore, it is necessary to modify the activity and its acidic tolerance to further improve the performance of the EBFC.
Results
This paper attempts to improve the enzyme activity of DI originated from Geobacillus stearothermophilus under acidic conditions through directed evolution. Three rounds of random mutagenesis by error-prone PCR of the GsDI gene followed by high-throughput screening allowed the identification of the mutant 3–8 (H37Q, S73T, F105L, S68T, G61S, D74V) exhibiting a 4- or 7-fold increase in the catalytic activity at pH 5.4 or 4.5 compared to that of the wild type. And the pH stability of mutant 3–8 was significantly better than that of wild type and showed a 1.3 times higher in the stability at pH 5.4. The EBFC anode equipped with 0.5 mg of mutant 3–8 achieved a maximum current of 40 μA at pH 5.4, much higher than that with the same loading of the wild type enzyme.
Conclusion
The GsDI has been improved in the specific activity and pH stability by directed evolution which leads to the improvement of the EBFC performance. Also, the enlarged catalytic channel of mutant and decreased B-factor may be beneficial for the activity and stability. These results suggest that this engineered DI will be a useful candidate for the construction of enhanced EBFCs.
Collapse
|
15
|
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00982-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Li Z, Li G, Wu Z, Jiao S, Hu Z. Cobalt sulfides/carbon nanohybrids: a novel biocatalyst for nonenzymatic glucose biofuel cells and biosensors. RSC Adv 2019; 9:32898-32905. [PMID: 35529714 PMCID: PMC9073265 DOI: 10.1039/c9ra06766c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/27/2019] [Indexed: 01/31/2023] Open
Abstract
Exploring high-performance electrocatalysts is of great importance in developing nonenzymatic biofuel cells. Hybrid nanostructures with transition metal compounds and carbon nanomaterials exhibit excellent electrocatalytic activity and have emerged as promising low-cost alternatives for various electrochemical reactions. Herein, we report cobalt sulfide/carbon nanohybrids via a facile synthesis, which have excellent electrocatalytic activity for glucose oxidation and oxygen reduction reaction. The nonenzymatic glucose biofuel cells equipped with cobalt sulfide/carbon nanohybrids deliver a high open circuit voltage of 0.72 V with a maximum open power density of 88 μW cm−2, indicating that cobalt sulfide/carbon nanohybrids are high performance biocatalysts for bioenergy conversion. Exploring high-performance electrocatalysts is of great importance in developing nonenzymatic biofuel cells.![]()
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Advanced Metallurgy
- University of Science and Technology Beijing
- Beijing
- P. R. China
| | - Gangyong Li
- State Key Laboratory of Advanced Metallurgy
- University of Science and Technology Beijing
- Beijing
- P. R. China
| | - Zhongdong Wu
- College of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha
- P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy
- University of Science and Technology Beijing
- Beijing
- P. R. China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine
- Beijing
- P. R. China
| |
Collapse
|