1
|
Wang H, Wang X, Si J, Bian X, Lai K, Zhu C, Yan J. Enhancing efficiency and control in DNA hydrogel synthesis: A dual rolling circle amplification approach and parameter optimization study. Int J Biol Macromol 2025; 287:138549. [PMID: 39653217 DOI: 10.1016/j.ijbiomac.2024.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
DNA hydrogels are a focus of current research in the realm of cutting-edge functional biomaterials. Rolling circle amplification (RCA) technology has surfaced as a flexible approach for producing functional DNA hydrogels in a one-pot manner, owing to its effectiveness and ease of use. This study introduces a simple dual RCA approach for producing DNA hydrogels. Our research delves into the impacts of different reaction parameters, such as reaction buffer, ethylenediaminetetraacetic acid (EDTA) concentration, base pair types and ratios, circular DNA template concentration, and RCA temperature, on the yield, morphology, and rheological characteristics of the resulting DNA hydrogels. Our findings demonstrate that DNA hydrogels prepared with TE buffer containing 1 mM EDTA, higher concentrations of circular DNA templates, and an RCA reaction temperature of 30 °C exhibited improved morphological characteristics and favorable mechanical properties. Furthermore, while G-C base pairs significantly enhance the mechanical properties of the hydrogel at lower concentrations, their excessive presence may negatively impact both the formation and mechanical integrity of the hydrogel. The findings from this study are crucial for boosting the efficiency and cost-effectiveness of DNA hydrogel synthesis, enhancing their quality, and broadening their range of applications.
Collapse
Affiliation(s)
- Huiyuan Wang
- International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xueming Wang
- International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojun Bian
- International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keqiang Lai
- International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Juan Yan
- International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Xie J, Chen J, Zhang Y, Li C, Liu P, Duan WJ, Chen JX, Chen J, Dai Z, Li M. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease. Talanta 2024; 272:125747. [PMID: 38364557 DOI: 10.1016/j.talanta.2024.125747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
MicroRNA (miRNA) is involved in the progression of Alzheimer's disease (AD) and emerges as a promising AD biomarker and therapeutic target. Therefore, there is an urgent need to develop convenient and precise miRNA detection methods for AD diagnosis. Herein, a dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for miRNA analysis for early diagnosis of AD was proposed. The strategy consisted of dumbbell-shaped probe (DP) as amplification template and a reporter probe (RP) with an AP site modification. In the presence of the target miRNA, the miRNAs bound to the toehold domain of DP and DP was activated into a circular template. Then, RCA reaction was triggered, producing a large number of long-stranded products containing repeated sequences. After RCA, APE1 enzyme recognized and removed AP site in the complex of RCA/RP products. By coupling RCA with APE1-assisted amplification, this method has high sensitivity with the limit of detection (LOD) of 1.82 fM. Moreover, by using DP as template for RCA reaction, high specificity can be achieved. By detecting miR-206 in serum using this method, the expression of miR-206 can be accurately distinguished between AD patients and healthy individuals, indicating that this method has broad application prospects in clinical diagnosis.
Collapse
Affiliation(s)
- Juan Xie
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jing Chen
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Ya Zhang
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Changhong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Piao Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Jun Duan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Ding M, Xiao X, Yang Y, Yao Z, Dong Z, Gao Q, Tian B. AND-Logic Cascade Rolling Circle Amplification for Optomagnetic Detection of Dual Target SARS-CoV-2 Sequences. Anal Chem 2024; 96:455-462. [PMID: 38123506 DOI: 10.1021/acs.analchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
DNA logic operations are accurate and specific molecular strategies that are appreciated in target multiplexing and intelligent diagnostics. However, most of the reported DNA logic operation-based assays lack amplifiers prior to logic operation, resulting in detection limits at the subpicomolar to nanomolar level. Herein, a homogeneous and isothermal AND-logic cascade amplification strategy is demonstrated for optomagnetic biosensing of two different DNA inputs corresponding to a variant of concern sequence (containing spike L452R) and a highly conserved sequence from SARS-CoV-2. With an "amplifiers-before-operator" configuration, two input sequences are recognized by different padlock probes for amplification reactions, which generate amplicons used, respectively, as primers and templates for secondary amplification, achieving the AND-logic operation. Cascade amplification products can hybridize with detection probes grafted onto magnetic nanoparticles (MNPs), leading to hydrodynamic size increases and/or aggregation of MNPs. Real-time optomagnetic MNP analysis offers a detection limit of 8.6 fM with a dynamic detection range spanning more than 3 orders of magnitude. The accuracy, stability, and specificity of the system are validated by testing samples containing serum, salmon sperm, a single-nucleotide variant, and biases of the inputs. Clinical samples are tested with both quantitative reverse transcription-PCR and our approach, showing highly consistent measurement results.
Collapse
Affiliation(s)
- Mingming Ding
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Qian Gao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
4
|
Khanthaphixay B, Wu L, Yoon JY. Microparticle-Based Detection of Viruses. BIOSENSORS 2023; 13:820. [PMID: 37622906 PMCID: PMC10452130 DOI: 10.3390/bios13080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Surveillance of viral pathogens in both point-of-care and clinical settings is imperative to preventing the widespread propagation of disease-undetected viral outbreaks can pose dire health risks on a large scale. Thus, portable, accessible, and reliable biosensors are necessary for proactive measures. Polymeric microparticles have recently gained popularity for their size, surface area, and versatility, which make them ideal biosensing tools. This review cataloged recent investigations on polymeric microparticle-based detection platforms across eight virus families. These microparticles were used as labels for detection (often with fluorescent microparticles) and for capturing viruses for isolation or purification (often with magnetic microparticles). We also categorized all methods by the characteristics, materials, conjugated receptors, and size of microparticles. Current approaches were compared, addressing strengths and weaknesses in the context of virus detection. In-depth analyses were conducted for each virus family, categorizing whether the polymeric microparticles were used as labels, for capturing, or both. We also summarized the types of receptors conjugated to polymeric microparticles for each virus family.
Collapse
Affiliation(s)
| | | | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 75721, USA; (B.K.); (L.W.)
| |
Collapse
|
5
|
Huang Z, Li J, Zhong H, Tian B. Nucleic acid amplification strategies for volume-amplified magnetic nanoparticle detection assay. Front Bioeng Biotechnol 2022; 10:939807. [PMID: 36032733 PMCID: PMC9399362 DOI: 10.3389/fbioe.2022.939807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
Magnetic nanoparticles (MNPs) can be quantified based on their magnetic relaxation properties by volumetric magnetic biosensing strategies, for example, alternating current susceptometry. Volume-amplified magnetic nanoparticle detection assays (VAMNDAs) employ analyte-initiated nucleic acid amplification (NAA) reactions to increase the hydrodynamic size of MNP labels for magnetic sensing, achieving attomolar to picomolar detection limits. VAMNDAs offer rapid and user-friendly analysis of nucleic acid targets but present inherence defects determined by the chosen amplification reactions and sensing principles. In this mini-review, we summarize more than 30 VAMNDA publications and classify their detection models for NAA-induced MNP size increases, highlighting the performances of different linear, cascade, and exponential NAA strategies. For some NAA strategies that have not yet been reported in VAMNDA, we predicted their performances based on the reaction kinetics and feasible detection models. Finally, challenges and perspectives are given, which may hopefully inspire and guide future VAMNDA studies.
Collapse
|
6
|
Xiao X, Yuan C, Li T, Fock J, Svedlindh P, Tian B. Optomagnetic biosensors: Volumetric sensing based on magnetic actuation-induced optical modulations. Biosens Bioelectron 2022; 215:114560. [PMID: 35841765 DOI: 10.1016/j.bios.2022.114560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
In comparison to alternative nanomaterials, magnetic micron/nano-sized particles show unique advantages, e.g., easy manipulation, stable signal, and high contrast. By applying magnetic actuation, magnetic particles exert forces on target objects for highly selective operation even in non-purified samples. We herein describe a subgroup of magnetic biosensors, namely optomagnetic biosensors, which employ alternating magnetic fields to generate periodic movements of magnetic labels. The optical modulation induced by the dynamics of magnetic labels is then analyzed by photodetectors, providing information of, e.g., hydrodynamic size changes of the magnetic labels. Optomagnetic sensing mechanisms can suppress the noise (by performing lock-in detection), accelerate the reaction (by magnetic force-enhanced molecular collision), and facilitate homogeneous/volumetric detection. Moreover, optomagnetic sensing can be performed using a low magnetic field (<10 mT) without sophisticated light sources or pickup coils, further enhancing its applicability for point-of-care tests. This review concentrates on optomagnetic biosensing techniques of different concepts classified by the magnetic actuation strategy, i.e., magnetic field-enhanced agglutination, rotating magnetic field-based particle rotation, and oscillating magnetic field-induced Brownian relaxation. Optomagnetic sensing principles applied with different actuation strategies are introduced as well. For each representative optomagnetic biosensor, a simple immunoassay strategy-based application is introduced (if possible) for methodological comparison. Thereafter, challenges and perspectives are discussed, including minimization of nonspecific binding, on-chip integration, and multiplex detection, all of which are key requirements in point-of-care diagnostics.
Collapse
Affiliation(s)
- Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Tingting Li
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China.
| |
Collapse
|
7
|
Kim TY, Lim MC, Lim JW, Woo MA. Rolling Circle Amplification-based Copper Nanoparticle Synthesis on Cyclic Olefin Copolymer Substrate and Its Application in Aptasensor. BIOTECHNOL BIOPROC E 2022; 27:202-212. [PMID: 35474695 PMCID: PMC9026004 DOI: 10.1007/s12257-021-0220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to develop a label-free fluorescent aptasensor for the detection of diazinon (DZN) on a cyclic olefin copolymer (COC) substrate. The aptasensor design was based on rolling circle amplification (RCA) technology and the use of self-assembled copper nanoparticles (CuNPs). A dual-function (DF) probe, capable of binding to circular DNA and an aptamer, was designed and immobilized on a COC-bottom 96-well plate. An aptamer was used for selective recognition of DZN, and the specific site of the aptamer that strongly reacted with DZN was successfully identified using circular dichroism (CD) analysis. In presence of DZN, the aptamer and DZN formed a strong complex, thus providing an opportunity for hybridization of the DF probe and circular DNA, thereby initiating an RCA reaction. Repetitive poly thymine (T) sequence with a length of 30-mer, generated in the RCA reaction, served as a template for the synthesis of fluorescent copper nanoparticles, emitting an orange fluorescence signal (at approximately 620 nm) proportional to the amount of RCA product, within 10 min under UV irradiation. The CuNP fluorescence was imaged and quantified using an image analysis software. A linear correlation of the fluorescence signal was confirmed in the DZN concentration range of 0.1–3 ppm, with a detection limit of 0.15 ppm. Adoption of a label-free detection method, utilizing RCA and fluorescent CuNPs on COC substrates, reduced the need for complex equipment and requirements for DZN analysis, thereby representing a simple and rapid sensing method circumventing the limitations of current complex and labor-intensive methods.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| | - Ji Won Lim
- The 4th R&D Institute, 6th Directorate, Agency for Defense Development, Daejeon, Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju, Korea
| |
Collapse
|
8
|
Arshavsky-Graham S, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 32435872 DOI: 10.1007/10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The recent coronavirus (COVID-19) pandemic has underscored the need to move from traditional lab-centralized diagnostics to point-of-care (PoC) settings. Lab-on-a-chip (LoC) platforms facilitate the translation to PoC settings via the miniaturization, portability, integration, and automation of multiple assay functions onto a single chip. For this purpose, paper-based assays and microfluidic platforms are currently being extensively studied, and much focus is being directed towards simplifying their design while simultaneously improving multiplexing and automation capabilities. Signal amplification strategies are being applied to improve the performance of assays with respect to both sensitivity and selectivity, while smartphones are being integrated to expand the analytical power of the technology and promote its accessibility. In this chapter, we review the main technologies in the field of LoC platforms for PoC medical diagnostics and survey recent approaches for improving these assays.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Garafutdinov RR, Sakhabutdinova AR, Gilvanov AR, Chemeris AV. Rolling Circle Amplification as a Universal Method for the Analysis of a Wide Range of Biological Targets. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1172-1189. [PMID: 34931113 PMCID: PMC8675116 DOI: 10.1134/s1068162021060078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
Detection and quantification of biotargets are important analytical tasks, which are solved using a wide range of various methods. In recent years, methods based on the isothermal amplification of nucleic acids (NAs) have been extensively developed. Among them, a special place is occupied by rolling circle amplification (RCA), which is used not only for the detection of a specific NA but also for the analysis of other biomolecules, and is also a versatile platform for the development of highly sensitive methods and convenient diagnostic devices. The present review reveals a number of methodical aspects of RCA-mediated analysis; in particular, the data on its key molecular participants are presented, the methods for increasing the efficiency and productivity of RCA are described, and different variants of reporter systems are briefly characterized. Differences in the techniques of RCA-mediated analysis of biotargets of various types are shown. Some examples of using different RCA variants for the solution of specific diagnostic problems are given.
Collapse
Affiliation(s)
- R. R. Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. R. Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. R. Gilvanov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - A. V. Chemeris
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| |
Collapse
|
10
|
Descamps L, Audry MC, Howard J, Mekkaoui S, Albin C, Barthelemy D, Payen L, Garcia J, Laurenceau E, Le Roy D, Deman AL. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting. Cells 2021; 10:cells10071734. [PMID: 34359904 PMCID: PMC8307954 DOI: 10.3390/cells10071734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Magnetophoresis-based microfluidic devices offer simple and reliable manipulation of micro-scale objects and provide a large panel of applications, from selective trapping to high-throughput sorting. However, the fabrication and integration of micro-scale magnets in microsystems involve complex and expensive processes. Here we report on an inexpensive and easy-to-handle fabrication process of micrometer-scale permanent magnets, based on the self-organization of NdFeB particles in a polymer matrix (polydimethylsiloxane, PDMS). A study of the inner structure by X-ray tomography revealed a chain-like organization of the particles leading to an array of hard magnetic microstructures with a mean diameter of 4 µm. The magnetic performance of the self-assembled micro-magnets was first estimated by COMSOL simulations. The micro-magnets were then integrated into a microfluidic device where they act as micro-traps. The magnetic forces exerted by the micro-magnets on superparamagnetic beads were measured by colloidal probe atomic force microscopy (AFM) and in operando in the microfluidic system. Forces as high as several nanonewtons were reached. Adding an external millimeter-sized magnet allowed target magnetization and the interaction range to be increased. Then, the integrated micro-magnets were used to study the magnetophoretic trapping efficiency of magnetic beads, providing efficiencies of 100% at 0.5 mL/h and 75% at 1 mL/h. Finally, the micro-magnets were implemented for cell sorting by performing white blood cell depletion.
Collapse
Affiliation(s)
- Lucie Descamps
- CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, University Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (L.D.); (M.-C.A.); (J.H.); (S.M.)
| | - Marie-Charlotte Audry
- CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, University Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (L.D.); (M.-C.A.); (J.H.); (S.M.)
| | - Jordyn Howard
- CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, University Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (L.D.); (M.-C.A.); (J.H.); (S.M.)
| | - Samir Mekkaoui
- CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, University Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (L.D.); (M.-C.A.); (J.H.); (S.M.)
| | - Clément Albin
- CNRS, UMR5306 Institut Lumière Matière, University Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France;
| | - David Barthelemy
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre Bénite, France; (D.B.); (L.P.); (J.G.)
| | - Léa Payen
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre Bénite, France; (D.B.); (L.P.); (J.G.)
| | - Jessica Garcia
- Laboratoire de Biochimie Et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre Bénite, France; (D.B.); (L.P.); (J.G.)
| | - Emmanuelle Laurenceau
- CNRS, INSA Lyon, CPE Lyon, CNRS, INL, UMR5270, University Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, 69130 Ecully, France;
| | - Damien Le Roy
- CNRS, UMR5306 Institut Lumière Matière, University Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France;
- Correspondence: (D.L.R.); (A.-L.D.)
| | - Anne-Laure Deman
- CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, University Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France; (L.D.); (M.-C.A.); (J.H.); (S.M.)
- Correspondence: (D.L.R.); (A.-L.D.)
| |
Collapse
|
11
|
Abstract
Magnetophoresis offers many advantages for manipulating magnetic targets in microsystems. The integration of micro-flux concentrators and micro-magnets allows achieving large field gradients and therefore large reachable magnetic forces. However, the associated fabrication techniques are often complex and costly, and besides, they put specific constraints on the geometries. Magnetic composite polymers provide a promising alternative in terms of simplicity and fabrication costs, and they open new perspectives for the microstructuring, design, and integration of magnetic functions. In this review, we propose a state of the art of research works implementing magnetic polymers to trap or sort magnetic micro-beads or magnetically labeled cells in microfluidic devices.
Collapse
|
12
|
Courtney SJ, Stromberg ZR, Kubicek-Sutherland JZ. Nucleic Acid-Based Sensing Techniques for Diagnostics and Surveillance of Influenza. BIOSENSORS-BASEL 2021; 11:bios11020047. [PMID: 33673035 PMCID: PMC7918464 DOI: 10.3390/bios11020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Influenza virus poses a threat to global health by causing seasonal outbreaks as well as three pandemics in the 20th century. In humans, disease is primarily caused by influenza A and B viruses, while influenza C virus causes mild disease mostly in children. Influenza D is an emerging virus found in cattle and pigs. To mitigate the morbidity and mortality associated with influenza, rapid and accurate diagnostic tests need to be deployed. However, the high genetic diversity displayed by influenza viruses presents a challenge to the development of a robust diagnostic test. Nucleic acid-based tests are more accurate than rapid antigen tests for influenza and are therefore better candidates to be used in both diagnostic and surveillance applications. Here, we review various nucleic acid-based techniques that have been applied towards the detection of influenza viruses in order to evaluate their utility as both diagnostic and surveillance tools. We discuss both traditional as well as novel methods to detect influenza viruses by covering techniques that require nucleic acid amplification or direct detection of viral RNA as well as comparing advantages and limitations for each method. There has been substantial progress in the development of nucleic acid-based sensing techniques for the detection of influenza virus. However, there is still an urgent need for a rapid and reliable influenza diagnostic test that can be used at point-of-care in order to enhance responsiveness to both seasonal and pandemic influenza outbreaks.
Collapse
|
13
|
Pinchon E, Leon F, Temurok N, Morvan F, Vasseur JJ, Clot M, Foulongne V, Cantaloube JF, Perre PV, Daynès A, Molès JP, Fournier-Wirth C. Rapid and specific DNA detection by magnetic field-enhanced agglutination assay. Talanta 2020; 219:121344. [PMID: 32887073 DOI: 10.1016/j.talanta.2020.121344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
The detection of DNA molecules by agglutination assays has suffered from a lack of specificity. The specificity can be improved by introducing a hybridization step with a specific probe. We developed a setting that captured biotinylated DNA targets between magnetic nanoparticles (MNPs) grafted with tetrathiolated probes and anti-biotin antibodies. The agglutination assay was enhanced using a series of magnetization cycles. This setting allowed to successfully detect a synthetic single stranded DNA with a sensitivity as low as 9 pM. We next adapted this setting to the detection of PCR products. We first developed an asymmetric pan-flavivirus amplification. Then, we demonstrated its ability to detect dengue virus with a limit of detection of 100 TCID50/mL. This magnetic field-enhanced agglutination assay is an endpoint readout, which benefits from the advantages of using nanoparticles that result in particular from a very reduced duration of the test; in our case it lasts less than 5 min. This approach provides a solution to develop new generation platforms for molecular diagnostics.
Collapse
Affiliation(s)
- Elena Pinchon
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Fanny Leon
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Nevzat Temurok
- HORIBA Medical ABX SAS, Parc Euromedecine, Rue Du Caducée BP 7290, 34184, Montpellier, France.
| | - François Morvan
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France.
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France.
| | - Martine Clot
- HORIBA Medical ABX SAS, Parc Euromedecine, Rue Du Caducée BP 7290, 34184, Montpellier, France.
| | - Vincent Foulongne
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Jean-François Cantaloube
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Philippe Vande Perre
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Aurélien Daynès
- HORIBA Medical ABX SAS, Parc Euromedecine, Rue Du Caducée BP 7290, 34184, Montpellier, France.
| | - Jean-Pierre Molès
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| | - Chantal Fournier-Wirth
- Pathogénèse et Contrôle des infections chroniques, EFS, Université de Montpellier, Inserm, 60 rue de Navacelles, 34 394 Montpellier, Cedex 5, France.
| |
Collapse
|
14
|
Tian B, Fock J, Minero GAS, Hansen MF. Nicking-assisted on-loop and off-loop enzymatic cascade amplification for optomagnetic detection of a highly conserved dengue virus sequence. Biosens Bioelectron 2020; 160:112219. [PMID: 32339155 DOI: 10.1016/j.bios.2020.112219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Applications of conventional linear ligation-rolling circle amplification (RCA) are restricted by the sophisticated operation steps and unsatisfactory picomolar-level detection limits. We herein demonstrate an RCA-based cascade amplification reaction that converts a side-reaction to secondary amplification, which improves the detection limit and simplifies the operation compared to linear ligation-RCA assays. The proposed nicking-assisted enzymatic cascade amplification (NECA) comprises an on-loop amplification reaction using circular templates to generate intermediate amplicons, and an off-loop amplification reaction using intermediate amplicons as primers for end amplicons. The whole NECA reaction is homogeneous and isothermal. Amplicons anneal to detection probes that are grafted onto magnetic nanoparticles (MNPs), such that MNP clusters form and can be detected in real-time using optomagnetic measurements. The optomagnetic sensor detects the presence and size increase of MNP clusters by optical transmission measurements in an oscillating magnetic field. A detection limit of 2 fM was achieved with a total assay time of ca. 70 min. By combining optomagnetic readouts of signal phase lag and hydrodynamic size increase of MNPs, NECA-based target quantification provided a wide dynamic detection range of ca. 4.5 orders of magnitude. Moreover, the specificity and the serum detection capability of the proposed method were investigated.
Collapse
Affiliation(s)
- Bo Tian
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Gabriel Antonio S Minero
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark
| | - Mikkel Fougt Hansen
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Minero GAS, Bagnasco M, Fock J, Tian B, Garbarino F, Hansen MF. Automated on-chip analysis of tuberculosis drug-resistance mutation with integrated DNA ligation and amplification. Anal Bioanal Chem 2020; 412:2705-2710. [PMID: 32157358 DOI: 10.1007/s00216-020-02568-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 01/14/2023]
Abstract
Detection of a single base mutation in Mycobacterium tuberculosis DNA can provide fast and highly specific diagnosis of antibiotic-resistant tuberculosis. Mutation-specific ligation of padlock probes (PLPs) on the target followed by rolling circle amplification (RCA) is highly specific, but challenging to integrate in a simple microfluidic device due to the low temperature stability of the phi29 polymerase and the interference of phi29 with the PLP annealing and ligation. Here, we utilized the higher operation temperature and temperature stability of Equiphi29 polymerase to simplify the integration of the PLP ligation and RCA steps of an RCA assay in two different strategies performed at uniform temperature. In strategy I, PLP annealing took place off-chip and the PLP ligation and RCA were performed in one pot and the two reactions were clocked by a change of the temperature. For a total assay time of about 1.5 h, we obtained a limit of detection of 2 pM. In strategy II, the DNA ligation mixture and the RCA mixture were separated into two chambers on a microfluidic disc. After on-disc PLP annealing and ligation, the disc was spun to mix reagents and initiate RCA. For a total assay time of about 2 h, we obtained a limit of detection of 5 pM. Graphical abstract.
Collapse
Affiliation(s)
- Gabriel Antonio S Minero
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Building 345C, 2800, Kongens Lyngby, Denmark.
| | - Martina Bagnasco
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Building 345C, 2800, Kongens Lyngby, Denmark
| | - Jeppe Fock
- BluSense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Bo Tian
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Building 345C, 2800, Kongens Lyngby, Denmark
| | - Francesca Garbarino
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Building 345C, 2800, Kongens Lyngby, Denmark
| | - Mikkel F Hansen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Building 345C, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
16
|
Zhao W, Tian S, Huang L, Liu K, Dong L. The review of Lab-on-PCB for biomedical application. Electrophoresis 2020; 41:1433-1445. [PMID: 31945803 DOI: 10.1002/elps.201900444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Prevention of infectious diseases, diagnosis of diseases, and determination of treatment options all rely on biosensors to detect and analyze biomarkers, which are usually divided into four parts: cell analysis, biochemical analysis, immunoassay, and molecular diagnosis. However, traditional biosensing devices are expensive, bulky, and require a lot of time to detect, which also limited its application in resource-limited areas. In recent years, Lab-on-PCB, which combines biosensing technology and PCB technology, has been widely used in biomedical applications due to its high integration, personalized design, and easy mass production. Among these Lab-on-PCB sensing devices, the PCB circuit plays an important role. It can be directly used as a resistance sensor to count cells, and also used as a control device to automatically control the detection device. Flexible PCBs can be used to make wearable medical biosensors. In addition, due to the high degree of integration of the PCB circuit, Lab-on-PCB can perform multiple inspections on the same platform, which reduces the inspection time equivalently. Therefore, in this review paper, we discuss the application of Lab-on-PCB in four analysis methods of cell analysis, biochemical analysis, immunoassay, and molecular diagnosis, and give some suggestions for improvement and future development trends at the end.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Shulin Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Ke Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lijuan Dong
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
17
|
Arshavsky-Graham S, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:247-265. [PMID: 32435872 DOI: 10.1007/10_2020_127] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent coronavirus (COVID-19) pandemic has underscored the need to move from traditional lab-centralized diagnostics to point-of-care (PoC) settings. Lab-on-a-chip (LoC) platforms facilitate the translation to PoC settings via the miniaturization, portability, integration, and automation of multiple assay functions onto a single chip. For this purpose, paper-based assays and microfluidic platforms are currently being extensively studied, and much focus is being directed towards simplifying their design while simultaneously improving multiplexing and automation capabilities. Signal amplification strategies are being applied to improve the performance of assays with respect to both sensitivity and selectivity, while smartphones are being integrated to expand the analytical power of the technology and promote its accessibility. In this chapter, we review the main technologies in the field of LoC platforms for PoC medical diagnostics and survey recent approaches for improving these assays.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.,Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel. .,The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|