1
|
Gong X, Zhang J, Zhu L, Bai S, Yu L, Sun Y. Fabrication of a Heptapeptide-Modified Poly(glycidyl Methac-Rylate) Nanosphere for Oriented Antibody Immobilization and Immunoassay. Molecules 2024; 29:4635. [PMID: 39407565 PMCID: PMC11477792 DOI: 10.3390/molecules29194635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Oriented antibody immobilization has been widely employed in immunoassays and immunodiagnoses due to its efficacy in identifying target antigens. Herein, a heptapeptide ligand, HWRGWVC (HC7), was coupled to poly(glycidyl methacrylate) (PGMA) nanospheres (PGMA-HC7). The antibody immobilization behavior and antigen recognition performance were investigated and compared with those on PGMA nanospheres by nonspecific adsorption and covalent coupling via carbodiimide chemistry. The antibodies tested included bovine, rabbit, and human immunoglobulin G (IgG), while the antigens included horseradish peroxidase (HRP) and β-2-Microglobulin (β2-MG). The nanospheres were characterized using zeta potential and particle size analyzers, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and reversed-phase chromatography, proving each synthesis step was succeeded. Isothermal titration calorimetry assay demonstrated the strong affinity interaction between IgG and PGMA-HC7. Notably, PGMA-HC7 achieved rapid and extremely high IgG adsorption capacity (~3 mg/mg) within 5 min via a specific recognition via HC7 without nonspecific interactions. Moreover, the activities of immobilized anti-HRP and anti-β2-MG antibodies obtained via affinity binding were 1.5-fold and 2-fold higher than those of their covalent coupling counterparts. Further, the oriented-immobilized anti-β2-MG antibody on PGMA-HC7 exhibited excellent performance in antigen recognition with a linear detection range of 0-5.3 μg/mL, proving its great potential in immunoassay applications.
Collapse
Affiliation(s)
- Xiaoxing Gong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.G.); (J.Z.); (L.Z.); (S.B.)
| | - Jie Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.G.); (J.Z.); (L.Z.); (S.B.)
| | - Liyan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.G.); (J.Z.); (L.Z.); (S.B.)
| | - Shu Bai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.G.); (J.Z.); (L.Z.); (S.B.)
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.G.); (J.Z.); (L.Z.); (S.B.)
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.G.); (J.Z.); (L.Z.); (S.B.)
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Ali A, Khan S, Li Z. Electrochemiluminescent resonance energy transfer between amino-modified g-C 3N 4/Bi 2MoO 6 composite and carboxyl CoS 2 nanoboxes for sensitive detection of alpha fetoprotein. Talanta 2024; 271:125709. [PMID: 38290268 DOI: 10.1016/j.talanta.2024.125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
This work demonstrates an effective quenching electrochemiluminescent (ECL) immunosensor based on resonance energy transfer for the sensitive detection of alpha fetoprotein (AFP). In this strategy, graphitic carbon nitride (g-C3N4) was coupled with bismuth molybdenum oxide (Bi2MoO6) to form a g-C3N4/Bi2MoO6 nanocomposite as a novel type of ECL immunosensor. The as-synthesized amino-modified g-C3N4/Bi2MoO6 nanocomposite presents strong and stable cathodic ECL activity compared to pristine g-C3N4. One plausible reason is that the synergistic effect between the g-C3N4 and Bi2MoO6 could facilitate charge transfer process and thereby enhancing the separation efficiency of electron-hole pairs. The other functional part of the immunosensor, carboxyl CoS2 nanoboxes with a broad absorption range, was rationally designed and introduced. The evidence that the absorption spectra of carboxyl CoS2 NBs overlap with ECL spectra of g-C3N4/Bi2MoO6 nanocomposite holds accountable for exceptionally weakened ECL signal. This sandwich-type immunosensor was setup based on quenching mechanism concerning amino-modified g-C3N4/Bi2MoO6 as an ECL donor and carboxyl CoS2 NBs as an ECL accepter. The strategy was optimized to achieve a convincible and sensitive detection goal for AFP with a wide quantifiable range of 0.5 pg/mL-10 ng/mL whilst a sufficiently low detection limit of 0.04 pg/mL (S/N = 3). This immunosensor shows great potential for real sample analysis with reasonable recoveries ranging from 95.5 to 99.0 %, demonstrating its high precision for AFP determination.
Collapse
Affiliation(s)
- Asghar Ali
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Sonia Khan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Gong Q, Xu X, Cheng Y, Wang X, Liu D, Nie G. A novel "on-off-on" electrochemiluminescence strategy based on RNA cleavage propelled signal amplification and resonance energy transfer for Pb 2+ detection. Anal Chim Acta 2024; 1290:342218. [PMID: 38246744 DOI: 10.1016/j.aca.2024.342218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Lead (Pb) is one of the most toxic heavy-metal pollutants. Additionally, lead ions (Pb2+) can accumulate in the human body through the food chain, causing irreversible damage through organ damage and system disorders. In the past few years, the detection of Pb2+ has mainly relied on instrumental methods such as atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). Nonetheless, these techniques are complicated in terms of equipment and procedures, along with being time-intensive and expensive in terms of detection. These drawbacks have limited their wide application. Hence, there is a pressing need to develop detection techniques for Pb2+ that are not only cost-efficient but also highly sensitive and specific. RESULTS A novel "on-off-on" electrochemiluminescence (ECL) sensor for detecting Pb2+ was developed based on the resonance energy transfer (RET) effect between AuNPs and boron nitride quantum dots (BN QDs) and the recognition of Pb2+ by DNAzyme along with the cleavage reaction of the substrate chain. Poly(6-carboxyindole)/stannic sulfide (P6ICA/SnS2) nanocomposite was employed as a co-reaction accelerator to consequently facilitate the production of intermediate SO4•-. This effective enhancement of the reaction led to an improved ECL intensity of BN QDs and enabled the sensor platform to exhibit a higher original ECL response. Benefiting from the combination of the DNAzyme signal amplification strategy with the "on-off-on" design, the ECL sensor showed satisfactory selectivity, good stability, and high sensitivity. This ECL sensor exhibited a linear detection range (LDR) of 10-12-10-5 M and a limit of detection (LOD) of 2.6 × 10-13 M. SIGNIFICANCE In the present work, an "on-off-on" ECL sensor is constructed based on RET effect for ultrasensitive detection of Pb2+. P6ICA/SnS2 was investigated as the co-reaction accelerator in this sensor. Moreover, this ECL sensor exhibited excellent analytical capability for detecting Pb2+ in actual water samples, providing a method for detecting other heavy metal ions as well.
Collapse
Affiliation(s)
- Qinghua Gong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xuejiao Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yanmei Cheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xianhong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
4
|
Hu L, Shi T, Chen J, Cui Q, Yu H, Wu D, Ma H, Wei Q, Ju H. Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C 3N 4 to FeMOFs-sCuO for neuron-specific enolase immunosensing. Biosens Bioelectron 2023; 226:115132. [PMID: 36791617 DOI: 10.1016/j.bios.2023.115132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
For the diagnosis and therapy of small cell lung cancer (SCLC), the accurate and sensitive determination of neuron-specific enolase (NSE) content is crucial. This work outlines a dual-quenching electrochemiluminescence resonance energy transfer (ECL-RET) immunosensor based on the double quenching effects of iron base metal organic frameworks (FeMOFs) loaded with small sized CuO nanoparticles (FeMOFs-sCuO) towards CoPd nanoparticles (CoPdNPs) enhanced porous g-C3N4 (P-C3N4-CoPdNPs). To be specific, we prepared a porous g-C3N4 (P-C3N4) which has a rich porous structure, and significantly increased the specific surface area and the number of reaction sites of P-C3N4. Meanwhile, the CoPdNPs were loaded onto P-C3N4 to improve the ECL luminescence property of P-C3N4/K2S2O8 system through acting as a coreaction accelerator. In addition, the ultraviolet-visible (UV-vis) absorption spectra of FeMOFs and small sized CuO nanoparticles (sCuO) showed considerable overlap with the ECL emission spectra of P-C3N4 appropriately. Therefore, FeMOFs with high specific surface area were prepared and well combined with sCuO to effectively dual-quenching the ECL emission of P-C3N4 based on resonance energy transfer. Hence, a new type ECL-RET couple made up of P-C3N4-CoPdNPs (donor) and FeMOFs-sCuO (acceptor) were developed for the first time. A certain amount of P-C3N4-CoPdNPs, Ab1, BSA, NSE were modified layer by layer onto the electrode surface. Then FeMOFs-sCuO-Ab2 bioconjugates was incubated through the immune recognition binding. As a result, a sandwich-type ECL biosensor was manufactured successfully for NSE immunoassay. Under optimal experimental conditions, the limit of detection (LOD) and the limit of quantitation (LOQ) of the prepared ECL sensor for NSE analysis was 20.4 fg mL-1 and 7.99 fg mL-1, respectively, with the relative standard deviation (RSD) of 1.68%. The linear detection range was 0.0000500-100 ng mL-1. The studied immunosensor had satisfactory sensitivity, specificity and reproducibility, manifesting the suggested sensing strategy might offer a good technical means and theoretical basis for the sensitivity analysis of NSE and has a potential application in clinical diagnosis analysis.
Collapse
Affiliation(s)
- Lihua Hu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Tengfei Shi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiye Chen
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qianqian Cui
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hao Yu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
5
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Meng S, Qin D, Wu Y, Mo G, Jiang X, Deng B. Electrochemiluminescence resonance energy transfer of MnCO 3 for ultrasensitive amyloid-β protein detection. Talanta 2023; 253:123993. [PMID: 36228558 DOI: 10.1016/j.talanta.2022.123993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/27/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
A composite material MnCO3/poly(diallyl dimethyl ammonium chloride) (PDDA)/Ag with excellent electrochemiluminescence (ECL) performance and high biocompatibility was prepared by adding MnCO3 and PDDA to silver nanoparticles (AgNPs). MnCO3/PDDA/Ag and Au@SiO2NPs were used as ECL donors and acceptors, respectively. Thus, an effective ECL-resonance energy transfer (RET) sensing platform was established. In a potassium persulfate (K2S2O8) medium, MnCO3 exhibited ECL emission with an ECL band appearing at 500-600 nm. In addition, Au@SiO2 nanoparticles showed a UV-visible absorption at 450-650 nm. The ECL emission spectra of MnCO3 overlapped with the absorption spectra of Au@SiO2NPs. The effective ECL quenching resulted in a good response to the concentration of Aβ42 in serum samples. The linear range was 5 fg ⋅ mL-1 to 100 ng ⋅ mL-1, and the detection limit was 2 fg ⋅ mL-1. The recovery ranged from 97.7% to 104%. The high-efficiency ECL-RET immunosensor has potential application in detecting human serum Aβ42 and other biomarkers, and can be used for the early screening of diseases.
Collapse
Affiliation(s)
- Shuo Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Guichun Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaohua Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
7
|
Wang Q, Zhang Z, Zhang L, Liu Y, Xie L, Ge S, Yu J. Photoswitchable CRISPR/Cas12a-Amplified and Co 3O 4@Au Nanoemitter Based Triple-Amplified Diagnostic Electrochemiluminescence Biosensor for Detection of miRNA-141. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32960-32969. [PMID: 35839124 DOI: 10.1021/acsami.2c08823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a CRISPR/Cas12a initiated switchable ternary electrochemiluminescence (ECL) biosensor combined with a Co3O4@Au nanoemitter is presented for the in vitro monitoring of miRNA-141. Benefiting from the advantages of high-throughput cargo payload capability and superconductivity, three-dimensional reduced graphene oxide (3D-rGO) was designated as an introductory conducting stratum of a paper working electrode (PWE). With the collaborative participation of Co3O4@Au NPs, the transmutation of TPrA in the Ru(bpy)32+/TPrA system can be riotously expedited into exorbitant free radical ions TPrA•, which provoked the exaggeration of the ECL signal. Moreover, the programmable enzyme-free hybrid chain reaction (HCR) amplifier on the PWE surface accurately anchored the assembly of nucleic acid tandem and accomplished the secondary recursion of the signal. Impressively, the multifunctional CRISPR/Cas12a with nonspecific cis/trans-splitting decomposition manipulated the photoswitch of the "on-off" signal state that avoided the false-positive diagnosis. The presented multistrategy cooperative biosensor demonstrated extraordinary sensitivity and specificity, with a low detection limit of 3.3 fM (S/N = 3) in the concentration scope from 10 fM to 100 nM, which fully corresponded to the expectation. Overall, this innovative methodology paved a generous avenue for evaluating multifarious biotransformations and provided a tremendous impetus to the development of real-time diagnosis and clinical detection of other biomarkers.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Li Xie
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
8
|
Li L, Liu X, He S, Cao H, Su B, Huang T, Chen Q, Liu M, Yang DP. Electrochemiluminescence Immunosensor Based on Nanobody and Au/CaCO 3 Synthesized Using Waste Eggshells for Ultrasensitive Detection of Ochratoxin A. ACS OMEGA 2021; 6:30148-30156. [PMID: 34778686 PMCID: PMC8582264 DOI: 10.1021/acsomega.1c05213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
A novel ultrasensitive electrochemiluminescence (ECL) immunoassay based on Au/CaCO3 was proposed for detecting ochratoxin A (OTA) in coffee. Au/CaCO3 nanocomposites synthesized using waste eggshells as the template with a large surface area and excellent electrochemical properties were applied for immobilizing a large amount of Ru(bpy)3 2+ and conjugating a high-affinity nanobody (prepared by the phage display technique). Coupling of the Au/CaCO3 nanocomposites and nanobody technologies provided an ultrasensitive and highly selective ECL immunosensor for OTA detection in the range of 10 pg/mL-100 ng/mL with a low detection limit of 5.7 pg/mL. Moreover, the as-prepared ECL immunosensor showed excellent performance and high stability. Finally, the proposed ECL sensor was applied to analyze OTA in coffee samples, confirming the desirable accuracy and practical applicability potential. Overall, this work presents a new nanomaterial for fabricating the sensing interface of immunosensors by harnessing natural waste as the source and a method for detecting toxic OTA in foods.
Collapse
Affiliation(s)
- Linzhi Li
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Xing Liu
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Saijun He
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Hongmei Cao
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Benchao Su
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Tianzeng Huang
- College
of Chemistry and Engineering Technology, Hainan University, 58
Renmin Avenue, Haikou 570228, China
| | - Qi Chen
- College
of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Minghuan Liu
- College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian Province 362000, China
| | - Da-Peng Yang
- College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian Province 362000, China
- School
of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
9
|
Zhumasheva N, Kudreeva L, Kosybayeva D. Molybdenum oxide based sensors. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this review article were considered the works of electrochemical sensors modified with molybdenum oxide. The work of sensors based on molybdenum oxide was systematized, a comparison table was developed, the sensors were classified according to the purpose of use. Methods of molybdenum oxide synthesis used to modify the working electrode in electrochemical sensors were considered. The various methods have been used to synthesize molybdenum oxide, such as a thermal, hydrothermal, electrochemical, electric spark, pulsed laser method, acid condensation, electrophoretic precipitation, pulse potential precipitation. The main parameters of the molybdenum oxide modified sensors, such as the detection limit, linear range, response time, sensitivity, and other parameters were compared. As a result of studies, it was found that molybdenum oxide is selected as a modifying material in electrochemical sensors due to the unique physicochemical properties of molybdenum oxide, in particular because of mechanical strength, electrical conductivity, electro catalytic activity, crystallinity. The features of electrochemical biosensors coated with molybdenum oxide were described for the detection of important compounds in specific samples. Sensors based on molybdenum oxide have been used for detection of glucose, dopamine, ethanol, ascorbic acid, troponin-1, norepinephrine, procalcitonin, L-lactate, bromate, chlorate, E110, tartrazine, hydrochlorothiazide, human epidermal growth factor-2, lithium,sodium,potassium. This paper provides general summarized information about current aspects of research works related to electrochemical sensors based on molybdenum oxide.
Collapse
|
10
|
Xue J, Zhao Q, Yang L, Ma H, Wu D, Liu L, Ren X, Ju H, Wei Q. Dual-Mode Sensing Platform Guided by Intramolecular Electrochemiluminescence of a Ruthenium Complex and Cationic N,N-Bis(2-(trimethylammonium iodide)propylene) Perylene-3,4,9,10-tetracarboxydiimide for Estradiol Assay. Anal Chem 2021; 93:6088-6093. [DOI: 10.1021/acs.analchem.0c04563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jingwei Xue
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Qinqin Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Lei Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
11
|
Zhao LZ, Fu YZ, Ren SW, Cao JT, Liu YM. A novel chemiluminescence imaging immunosensor for prostate specific antigen detection based on a multiple signal amplification strategy. Biosens Bioelectron 2021; 171:112729. [PMID: 33113387 DOI: 10.1016/j.bios.2020.112729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
A novel chemiluminescence (CL) imaging platform was constructed for prostate specific antigen (PSA) detection in a multiple signal amplifying manner. To construct the platform, the primary antibody for PSA was firstly immobilized on a O-ring area of a glass slide for recognizing the PSA. The horseradish peroxidase (HRP) and the secondary antibody of PSA (Ab2) functionalized Au NPs (HRP-Au NPs-Ab2) were modified on the platform through immunoreaction between PSA and Ab2. The excellent catalytic effect of Au NPs and HRP on the HRP-Au NPs-Ab2 to the luminol-H2O2 CL system provided the dual-signal amplification for PSA detection. To further enhance the sensitivity, tyramine signal amplification (TSA) strategy was introduced: tyramine-HRP conjugates were added into the O-ring reservoir and thus tyramine-HRP repeats formed in the presence of H2O2, generating a multiple signal amplification because of the large amounts of HRP on the sensing interface. The excellent performance of HRP-Au NPs-Ab2 and TSA strategy endows the CL platform with high sensitivity. The PSA was detected with a photomultiplier tube (PMT) and visually analyzed by a charge coupled device (CCD), respectively. The linear ranges of PMT and CCD for PSA are 0.1-100.0 ng mL-1 with a detection limit of 0.05 pg mL-1 and 0.5 - 100.0 ng mL-1 with a detection limit of 0.1 pg mL-1, respectively. The levels of PSA in several human serum samples were determined and the recoveries are ranged from 82.5% - 117.0%. This CL immunosensing platform holds great potential for bioactive molecules detection visually and sensitively.
Collapse
Affiliation(s)
- Li-Zhen Zhao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Yi-Zhuo Fu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang, 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China.
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
12
|
Xue J, Jia Y, Yang L, Feng J, Wu D, Ren X, Du Y, Ju H, Wei Q. Etching Triangular Silver Nanoparticles by Self-generated Hydrogen Peroxide to Initiate the Response of an Electrochemiluminescence Sensing Platform. Anal Chem 2020; 92:14203-14209. [DOI: 10.1021/acs.analchem.0c03398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwei Xue
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Jinhui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
13
|
Electrochemiluminescence behaviour of silver/ZnIn2S4/reduced graphene oxide composites quenched by Au@SiO2 nanoparticles for ultrasensitive insulin detection. Biosens Bioelectron 2020; 162:112235. [DOI: 10.1016/j.bios.2020.112235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
|
14
|
Li C, Wang Y, Jiang H, Wang X. Biosensors Based on Advanced Sulfur-Containing Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3488. [PMID: 32575665 PMCID: PMC7349518 DOI: 10.3390/s20123488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
Abstract
In recent years, sulfur-containing nanomaterials and their derivatives/composites have attracted much attention because of their important role in the field of biosensor, biolabeling, drug delivery and diagnostic imaging technology, which inspires us to compile this review. To focus on the relationships between advanced biomaterials and biosensors, this review describes the applications of various types of sulfur-containing nanomaterials in biosensors. We bring two types of sulfur-containing nanomaterials including metallic sulfide nanomaterials and sulfur-containing quantum dots, to discuss and summarize the possibility and application as biosensors based on the sulfur-containing nanomaterials. Finally, future perspective and challenges of biosensors based on sulfur-containing nanomaterials are briefly rendered.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (C.L.); (Y.W.); (H.J.)
| |
Collapse
|
15
|
Chen M, Ning Z, Chen K, Zhang Y, Shen Y. Recent Advances of Electrochemiluminescent System in Bioassay. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 2020; 164:112332. [PMID: 32553355 DOI: 10.1016/j.bios.2020.112332] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) as porous materials have attracted much attention in various fields such as gas storage, catalysis, separation, and nanomedical engineering. However, their applications in electrochemiluminescence (ECL) biosensing are limited due to the poor conductivity, lack of modification sites, low stability and specificity, and weak biocompatibility. Integrating the functional materials into MOF structures endows MOF composites with improved conductivity and stability and facilitates the design of ECL sensors with multifunctional MOFs, which are potentially advantageous over their individual components. This review summarizes the strategies for designing ECL-active MOF composites including using luminophore as a ligand, in situ encapsulation of luminophore within the framework, and post-synthetic modification. As-prepared MOF composites can serve as innovative emitters, luminophore carriers, electrode modification materials and co-reaction accelerators in ECL biosensors. The sensing applications of ECl-active MOF composites in the past five years are highlighted including immunoassays, genosensors, and small molecule detection. Finally, the prospects and challenges associated with MOF composites and their related materials for ECL biosensing are tentatively proposed.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530008, China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Electrochemiluminescence behaviour of m-CNNS quenched by CeO2@PDA composites for sensitive detection of BNP. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Xue J, Yang L, Jia Y, Wang H, Zhang N, Ren X, Ma H, Wei Q, Ju H. Electrochemiluminescence Double Quenching System Based on Novel Emitter GdPO 4:Eu with Low-Excited Positive Potential for Ultrasensitive Procalcitonin Detection. ACS Sens 2019; 4:2825-2831. [PMID: 31588728 DOI: 10.1021/acssensors.9b01552] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nowadays, the electrochemiluminescence (ECL) immunosensor with the unique superiority of tunable luminescence and ultrahigh sensitivity has become one of the most promising immunoassay techniques, especially for low-abundance biomarkers analysis. However, the use of signal probes with high excited potential and applied emitters which owned good intensity but biotoxicity limited its application. Herein, an ECL resonance energy transfer strategy was developed based on protein bioactivity protection utilizing europium-doped phosphoric acid gadolinium (GdPO4:Eu) as novel low-potential luminophor (donor) and Pd@Cu2O as the quenching probe (acceptor). Specifically, GdPO4:Eu was first prepared by using the hydrothermal synthesis method to apply in ECL, and when it coexisted with K2S2O8, cathode, a strong ECL signal would be generated at a low potential of -1.15 V (vs Ag/AgCl), where the immunocompetence of antigens and antibodies can be maintained well. Electrical pair Eu3+/Eu2+, as the coreactant promoter, produced by potential excitation could produce more SO4•- to accelerate the oxidation process of GdPO4:Eu. Meanwhile, Cu2O coated onto Pd (Pd@Cu2O), as a dual-quencher, enhanced the quenching effect of Pd alone and controlled the ECL intensity of the "signal on" state within a reasonable range. As a result, the proposed biosensor for detection of trace procalcitonin, a biomarker of systemic inflammatory response syndrome, exhibited a far low detection limit, 0.402 fg/mL (S/N = 3). Importantly, this work not only utilized a promising ECL emitter for biosensing platform construction but also had momentous potential in biomarker detection of disease diagnosis and clinical analysis.
Collapse
Affiliation(s)
- Jingwei Xue
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|