1
|
Yang X, Li C, Xia J, Zhang F, Wang Z. Self-assembly of a AuNPs/Ti 3C 2 MXene hydrogel for cascade amplification of microRNA-122 biosensing. Mikrochim Acta 2024; 191:259. [PMID: 38605266 DOI: 10.1007/s00604-024-06337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is 0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).
Collapse
Affiliation(s)
- Xiao Yang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
- Bloomage Biotechnology Corporation Limited, Jinan, 250101, Shandong, China
| | - Chunguang Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Gou X, Zhang Y, Zhu S, Yu X, Qin L, Cheng X, Zhang Y, Ding S, Chen R, Tang H, Cheng W. Asymmetric Hairpins DNA Encapsulated Silver Nanoclusters for In Situ Fluorescence Imaging of Fusion Gene Isoforms in Bone Marrow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303034. [PMID: 37365695 DOI: 10.1002/smll.202303034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Rapid and accurate imaging of the BCR/ABL fusion gene isoforms (e.g., e13a2, e14a2 and co-expression type) of chronic myeloid leukemia (CML) is of vital importance to first-line drug selection, but there is no assay that meets clinical needs (e.g., clinical kits > 18 h without isoforms information). Herein, an in situ imaging platform is developed for the rapid and accurate detection of CML fusion gene isoforms using asymmetric sequence-enhanced hairpins DNA encapsulated silver nanoclusters (ADHA) and catalyzed hairpin assembly (CHA). The specific detection of e13a2 and e14a2 fusion gene isoforms with detection limits of 19.2 am (11.558 copies µL-1 ) and 32.56 am (19.601 copies µL-1 ) in one-pot is achieved. The feasibility of the developed assay for real-world applications are demonstrated by one-step fluorescence imaging (40 min) of e13a2, e14a2 and co-expression type in bone marrow quantitatively (International Standard: 15.66%-168.878%) and further validated by cDNA-sequencing. This work suggests that the developed imaging platform holds great potential for rapid identification of the fusion gene isoforms and isoform related treatment monitoring.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/therapeutic use
- Bone Marrow
- Silver/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Isoforms/genetics
- DNA, Complementary
- Optical Imaging
Collapse
Affiliation(s)
- Xiaolong Gou
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shasha Zhu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaolin Yu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, P. R. China
| | - Lu Qin
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuhong Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Hua Tang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
3
|
Tang Q, Li Q, Shi L, Liu W, Li B, Jin Y. Multifunctional DNA nanoprobe for tumor-targeted synergistic therapy by integrating chemodynamic therapy with gene silencing. NANOSCALE HORIZONS 2023; 8:1106-1112. [PMID: 37317707 DOI: 10.1039/d2nh00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the high complexity, diversity and heterogeneity of tumor occurrence and development, multi-mode synergistic therapy is more effective than single treatment modes to improve the antitumor efficacy. Also, multifunctional probes are crucial to realize synergistic therapy. Herein, a multifunctional DNA tetrahedron nanoprobe was ingeniously designed to simultaneously achieve chemodynamic therapy (CDT) and gene silencing for synergistic antitumor. The multifunctional DNA tetrahedron nanoprobe, DNA tetrahedron-silver nanocluster-antagomir-21 (D-sgc8-DTNS-AgNCs-Anta-21), integrated a CDT reagent (DNA-AgNCs) and miRNA-21 inhibitor (Anta-21) with a specific recognition probe (aptamer). After targeted entry in cancer cells, D-sgc8-DTNS-AgNCs-Anta-21 silenced endogenous miRNA-21 by Anta-21 and produced highly toxic ˙OH by reacting with H2O2, which induced apoptosis in the tumor cells. The targeted recognition of aptamers led to the concentration-dependent death of HeLa cells. On the contrary, the cell survival rate of normal cells was basically unaffected with an increase in the concentration of D-sgc8-DTNS-AgNCs-Anta-21. Therefore, the diverse functions, biocompatibility and programmability of DNA provide a useful and easy way to assemble multifunctional probes for synergistic therapy.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Hu J, Mao Z, Lu Y, Chen Q, Xia J, Deng H, Chen H. PD-L1 exosomes electrochemical sensor based on coordination of AgNCs and Zr 4+: Multivalent peptide enhancing target capture efficiency and antifouling performance. Biosens Bioelectron 2023; 235:115379. [PMID: 37207581 DOI: 10.1016/j.bios.2023.115379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Programmed death ligand 1 (PD-L1) exosomes are important biomarkers of immune activation in the initial stages of treatment and can predict clinical responses to PD-1 blockade in various cancer patients. However, traditional PD-L1 exosome bioassays face challenges such as high interface fouling in complex detection environments, limited detection specificity, and poor clinical serum applicability. Inspired by the multi-branched structure of trees, a biomimetic tree-like multifunctional antifouling peptide (TMAP)-assisted electrochemical sensor was developed for high-sensitivity exosomes detection. Multivalent interaction of TMAP significantly enhances the binding affinity of PD-L1 exosomes, thanks to the designed branch antifouling sequence, TMAPs antifouling performance is further improved. The addition of Zr4+ forms coordination bonds with the exosome's lipid bilayer phosphate groups to achieve highly selective and stable binding without interference from protein activity. The specific coordination between AgNCs and Zr4+ contributes to a dramatic change in the electrochemical signals, and lowing detection limit. The designed electrochemical sensor exhibited excellent selectivity and a wide dynamic response within the PD-L1 exosome concentration range from 78 to 7.8 × 107 particles/mL. Overall, the multivalent binding ability of TMAP and the signal amplification characteristics of AgNCs have a certain driving role in achieving clinical detection of exosomes.
Collapse
Affiliation(s)
- Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yongkai Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junjie Xia
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Chen J, Liu J, Wu D, Pan R, Chen J, Wu Y, Huang M, Li G. CRISPR/Cas Precisely Regulated DNA-Templated Silver Nanocluster Fluorescence Sensor for Meat Adulteration Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14296-14303. [PMID: 36288511 DOI: 10.1021/acs.jafc.2c04500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Meat adulteration can cause consumer fraud, food allergies, and religious issues. Rapid and sensitive detection methods are urgently demanded to supervise meat authenticity. Herein, a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas precisely regulated DNA-templated silver nanocluster (DNA-AgNC) sensor was ingeniously designed to detect meat adulteration. Specific sequence recognition of CRISPR/Cas12a allowed accurate identification of target DNA. The emerging label-free fluorescent probes, DNA-AgNCs, a class of promising fluorophores in biochemical analysis with attractive photostability and remarkably enhanced fluorescence properties, were first introduced as the substrates of CRISPR/Cas12a system, allowing a sensitive output of amplified signals through the precise regulation of the unique target DNA-activated trans-cleavage activity of Cas12a. Based on this specific recognition, efficient signal transduction of CRISPR/Cas12a, and the outstanding fluorescence properties of DNA-AgNCs, the proposed strategy achieved a satisfactory linear range from 10 pM to 1 μM with a limit of detection (LOD) as low as 1.9 pM, which can achieve sensitive detection of meat adulteration.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K
| | - Ruiyuan Pan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Label-free and dual-mode biosensor for HPV DNA based on DNA/silver nanoclusters and G-quadruplex/hemin DNAzyme. Talanta 2022; 247:123554. [DOI: 10.1016/j.talanta.2022.123554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022]
|
7
|
Qian X, Yang H, Liu S, Yang L, Li J, Gao W, Du G, Qu Q, Ran X. Supramolecular DNA sensor based on the integration of host-guest immobilization strategy and WP5-Ag/PEHA supramolecular aggregates. Anal Chim Acta 2022; 1220:340077. [DOI: 10.1016/j.aca.2022.340077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/01/2022]
|
8
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
9
|
Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. Trends Analyt Chem 2022; 155:116686. [PMID: 35611316 PMCID: PMC9119280 DOI: 10.1016/j.trac.2022.116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Viral infections are responsible for the deaths of millions of people throughout the world. Since outbreak of highly contagious and mutant viruses such as contemporary sars-cov-2 pandemic, has challenged the conventional diagnostic methods, the entity of a thoroughly sensitive, specific, rapid and inexpensive detecting technique with minimum level of false-positivity or -negativity, is desperately needed more than any time in the past decades. Biosensors as minimized devices could detect viruses in simple formats. So far, various nucleic acid, immune- and protein-based biosensors were designed and tested for recognizing the genome, antigen, or protein level of viruses, respectively; however, nucleic acid-based sensing techniques, which is the foundation of constructing genosensors, are preferred not only because of their ultra-sensitivity and applicability in the early stages of infections but also for their ability to differentiate various strains of the same virus. To date, the review articles related to genosensors are just confined to particular pathogenic diseases; In this regard, the present review covers comprehensive information of the research progress of the electrochemical, optical, and surface plasmon resonance (SPR) genosensors that applied for human viruses' diseases detection and also provides a well description of viruses' clinical importance, the conventional diagnosis approaches of viruses and their disadvantages. This review would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Mao Z, Chen R, Wang X, Zhou Z, Peng Y, Li S, Han D, Li S, Wang Y, Han T, Liang J, Ren S, Gao Z. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. Trends Food Sci Technol 2022; 122:211-222. [PMID: 35250172 PMCID: PMC8885088 DOI: 10.1016/j.tifs.2022.02.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety. SCOPE AND APPROACH This review introduces a new molecular diagnostic technology-biosensor analysis technology based on CRISPR-Cas12a. Systematic clarification of its development process and detection principles. It summarizes and systematically organizes its applications in viruses, food-borne pathogenic bacteria, small molecule detection, etc. In the past four years, which provides a brand-new and comprehensive solution for food detection. Finally, this article puts forward the challenges and the prospects for food safety. KEY FINDINGS AND CONCLUSIONS The novel coronavirus hazards infiltrated every step of the food industry, from processing to packaging to transportation. The biosensor analytical technology based on CRISPR-Cas12a has great potential in the qualitative and quantitative analysis of infectious pathogens. CRISPR-Cas12a can effectively identify the presence of the specific nucleic acid targets and the small changes in sequences, which is particularly important for nucleic acid identification and pathogen detection. In addition, the CRISPR-Cas12a method can be adjusted and reconfigured within days to detect other viruses, providing equipment for nucleic acid diagnostics in the field of food safety. The future work will focus on the development of portable microfluidic devices for multiple detection. Shao et al. employed physical separation methods to separate Cas proteins in different microfluidic channels to achieve multiple detection, and each channel simultaneously detected different targets by adding crRNA with different spacer sequences. Although CRISPR-Cas12a technology has outstanding advantages in detection, there are several technical barriers in the transformation from emerging technologies to practical applications. The newly developed CRISPR-Cas12a-based applications and methods promote the development of numerous diagnostic and detection solutions, and have great potential in medical diagnosis, environmental monitoring, and especially food detection.
Collapse
Affiliation(s)
- Zefeng Mao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaojuan Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China,Corresponding author
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,Corresponding author
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,Corresponding author
| |
Collapse
|
11
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Yang Y, Ghalandari B, Lin L, Sang X, Su W, Divsalar A, Ding X. A turn-on fluorescence sensor based on Cu 2+ modulated DNA-templated silver nanoclusters for glyphosate detection and mechanism investigation. Food Chem 2022; 367:130617. [PMID: 34352696 DOI: 10.1016/j.foodchem.2021.130617] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
The abuse application of glyphosate can result in a potential hazard for environment and human, however its ultrasensitive detection remains challenging. Herein, a Cu2+ modulated DNA-templated silver nanoclusters (DNA-AgNCs) sensor was constructed to sensitively determine glyphosate based on the turn-on fluorescence strategy. The fluorescence quenching of DNA-AgNCs occurred with the existence of Cu2+. Upon the presence of glyphosate, the functional groups on the surface of glyphosate could chelate with Cu2+, following the fluorescence recovery of DNA-AgNCs. Through the stoichiometric methods, we unveil that Cu2+-trigged fluorescence quenching mode is a combination of static and dynamic quenching with the static mode being predominant. In DNA-AgNCs/Cu2+ system, the carboxylate, amine, and phosphonate groups of glyphosate interact with Cu2+ through chelation, in which the carboxylate oxygen, the phosphonate oxygen atoms, and the monoprotonated secondary amine nitrogen atom and Cu2+ form chelate rings. This fluorescence sensor showed a desired linearity of glyphosate analysis under the optimum conditions, ranging from 15 to 100 μg/L with a low detection down to 5 μg/L. Moreover, the proposed sensor was successfully utilized to measure glyphosate in real samples, indicating a promising application in pesticide residues detection.
Collapse
Affiliation(s)
- Yixia Yang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liyun Lin
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Xiao Sang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenqiong Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
13
|
Xu L, Zhou Z, Gou X, Shi W, Gong Y, Yi M, Cheng W, Song F. Light up multiple protein dimers on cell surface based on proximity-induced fluorescence activation of DNA-templated sliver nanoclusters. Biosens Bioelectron 2021; 179:113064. [DOI: 10.1016/j.bios.2021.113064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
|
14
|
Bu J, Deng Z, Liu H, Li J, Wang D, Yang Y, Zhong S. Current methods and prospects of coronavirus detection. Talanta 2021; 225:121977. [PMID: 33592725 PMCID: PMC7833523 DOI: 10.1016/j.talanta.2020.121977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022]
Abstract
SARS-COV-2 is a novel coronavirus discovered in Wuhan in December 30, 2019, and is a family of SARS-COV (severe acute respiratory syndrome coronavirus), that is, coronavirus family. After infection with SARS-COV-2, patients often experience fever, cough, gas prostration, dyspnea and other symptoms, which can lead to severe acute respiratory syndrome (SARS), kidney failure and even death. The SARS-COV-2 virus is particularly infectious and has led to a global infection crisis, with an explosion in the number of infections. Therefore, rapid and accurate detection of the virus plays a vital role. At present, many detection methods are limited in their wide application due to their defects such as high preparation cost, poor stability and complex operation process. Moreover, some methods need to be operated by professional medical staff, which can easily lead to infection. In order to overcome these problems, a Surface molecular imprinting technology (SM-MIT) is proposed for the first time to detect SARS-COV-2 virus. For this SM-MIT method, this review provides detailed detection principles and steps. In addition, this method not only has the advantages of low cost, high stability and good specificity, but also can detect whether it is infected at designated points. Therefore, we think SM-MIT may have great potential in the detection of SARS-COV-2 virus.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
15
|
Fluorometric detection of cancer marker FEN1 based on double-flapped dumbbell DNA nanoprobe functionalized with silver nanoclusters. Anal Chim Acta 2021; 1148:238194. [DOI: 10.1016/j.aca.2020.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
16
|
Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J Electroanal Chem (Lausanne) 2021; 882:114989. [PMID: 33456428 PMCID: PMC7794054 DOI: 10.1016/j.jelechem.2021.114989] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Detection of pathogens, e.g., bacteria and viruses, is still a big challenge in analytical medicine due to their vast number and variety. Developing strategies for rapid, inexpensive, specific, and sensitive detection of the pathogens using nanomaterials, integrating with microfluidics devices, amplification methods, or even combining these strategies have received significant attention. Especially, after the health-threatening COVID-19 outbreak, rapid and sensitive detection of pathogens became very critical. Detection of pathogens could be realized with electrochemical, optical, mass sensitive, or thermal methods. Among them, electrochemical methods are very promising by bringing different advantages, i.e., they exhibit more versatile detection schemes and real-time quantification as well as label-free measurements, which provides a broader application perspective. In this review, we discuss the recent advances for the detection of bacteria and viruses using electrochemical biosensors. Moreover, electrochemical biosensors for pathogen detection were broadly reviewed in terms of analyte, bio-recognition and transduction elements. Different fabrication techniques, detection principles, and applications of various pathogens with the electrochemical biosensors were also discussed.
Collapse
Affiliation(s)
- Hüseyin Oğuzhan Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova 35340, Izmir, Turkey
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999 Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999 Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, 8916188635 Yazd, Iran
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| |
Collapse
|
17
|
Xu L, Li J, Shi W, Bao N, Yu C. Immobilization of hemoglobin on MnCO 3 sphere-loaded Au nanoparticles as highly efficient sensing platform towards hydrogen peroxide. NANOTECHNOLOGY 2021; 32:025503. [PMID: 32932239 DOI: 10.1088/1361-6528/abb8a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we report the synthesis of MnCO3-Au hybrid microspheres and their application on the electrochemical biosensing of hydrogen peroxide (H2O2) based on the immobilization of hemoglobin (Hb). The characterization of MnCO3-Au microspheres revealed that an abundance of Au nanoparticles (AuNPs) has been absorbed on the surface of the spherical MnCO3 by the electrostatic assembly. The combined unique properties of MnCO3-Au microspheres are beneficial for the realization of the direct electron transfer of Hb. Hb immobilized on the microspheres maintained its biological activity, showing a surface-controlled process with the heterogeneous electron transfer rate constant (k s) of 2.63 s-1. The fabricated biosensor displayed an excellent performance for the electrocatalytic reduction of H2O2. The linear range for the determination of H2O2 was from 0.06-40.0 μM with a detection limit of 0.015 µM (S/N = 3). The biosensor also exhibited high selectivity, good repeatability and long-term stability, which offers great potential for H2O2 detection in real sample analysis.
Collapse
Affiliation(s)
- Linyi Xu
- School of Public Health, Nantong University, Nantong 226019, People's Republic of China
| | - Jing Li
- School of Public Health, Nantong University, Nantong 226019, People's Republic of China
| | - Weishan Shi
- School of Public Health, Nantong University, Nantong 226019, People's Republic of China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong 226019, People's Republic of China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
18
|
DNA biosensor based on surface modification of ITO by physical vapor deposition of gold and carbon quantum dots modified with neutral red as an electrochemical redox probe. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. DNA-based label-free electrochemical biosensors: From principles to applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
El Aamri M, Yammouri G, Mohammadi H, Amine A, Korri-Youssoufi H. Electrochemical Biosensors for Detection of MicroRNA as a Cancer Biomarker: Pros and Cons. BIOSENSORS 2020; 10:E186. [PMID: 33233700 PMCID: PMC7699780 DOI: 10.3390/bios10110186] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
Cancer is the second most fatal disease in the world and an early diagnosis is important for a successful treatment. Thus, it is necessary to develop fast, sensitive, simple, and inexpensive analytical tools for cancer biomarker detection. MicroRNA (miRNA) is an RNA cancer biomarker where the expression level in body fluid is strongly correlated to cancer. Various biosensors involving the detection of miRNA for cancer diagnosis were developed. The present review offers a comprehensive overview of the recent developments in electrochemical biosensor for miRNA cancer marker detection from 2015 to 2020. The review focuses on the approaches to direct miRNA detection based on the electrochemical signal. It includes a RedOx-labeled probe with different designs, RedOx DNA-intercalating agents, various kinds of RedOx catalysts used to produce a signal response, and finally a free RedOx indicator. Furthermore, the advantages and drawbacks of these approaches are highlighted.
Collapse
Affiliation(s)
- Maliana El Aamri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Ghita Yammouri
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (G.Y.); (H.M.)
| | - Hafsa Korri-Youssoufi
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Equipe de Chimie Biorganique et Bioinorganique (ECBB), Bât 420, 2 Rue du Doyen Georges Poitou, 91400 Orsay, France;
| |
Collapse
|
21
|
Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin. Anal Chim Acta 2020; 1135:73-82. [PMID: 33070861 DOI: 10.1016/j.aca.2020.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022]
Abstract
In this study, boron-doped diamond (BDD) electrodes with varied B contents are prepared to determine the feasibility of the direct usage of BDD as an electrochemical biosensor without any modification. The electrochemical performance of the electrodes was investigated through the characterization of electrochemical impedance spectroscopy for potassium ferricyanide/potassium ferrocyanide (K3Fe(CN)6/K4Fe(CN)6) redox couples, as well as through qualitative and quantitative analysis of the two biomolecules dopamine (DA) and melatonin (MLT). The results show that the B content of BDD is the primary parameter for controlling the electrocatalytic current, that is, the response sensitivity. However, the abundant crystal planes and low background current are the key factors in improving the selectivity of the biomarkers to identify multiple analytes. Considering the catalytic current and its ability to distinguish the biomolecules, BDD with a B source carrier gas flow rate of 18 sccm is used as the sensing electrode for the simultaneous detection of DA and MLT. The response peak potential difference reaches 500 mV, and the linear concentration range for the two analytes is 0.4-600 μM, with detection limits of 0.1 μM for DA and 0.003 μM for MLT. These results match those observed for electrochemical sensors modified by various sensitive materials. BDD electrodes show good chemical resistance, good stability, and no pollution and are suitable for long-term usage as biomarker sensors.
Collapse
|
22
|
Chen J, Fan T, Chen Y, Ye L, Zhang C, Liu F, Qin Y, Tan Y, Jiang Y. Zeptomolar-level one-pot simultaneous detection of multiple colorectal cancer microRNAs by cascade isothermal amplification. Biosens Bioelectron 2020; 169:112631. [PMID: 32980803 DOI: 10.1016/j.bios.2020.112631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Multi-microRNA (miRNA) detection would greatly facilitate early diagnosis of colorectal cancer (CRC). Here a convenient cascade isothermal amplification approach incorporating a G-quadruplex molecular beacon (G4MB) was established for achieving one-pot detection of multiple CRC miRNAs (miRNA-21, miRNA-92a, miRNA-31); this strategy incorporated a Bsu DNA polymerase (Bsu pol)-induced strand-displacement reaction and a Lambda exonuclease (λexo)-aided recycling reaction. In the presence of target miRNA, the G-rich stem structure was opened and became available for hybridization with the primer to initiate synthesis of Bsu pol-catalyzed double-stranded DNA (dsDNA) that displaced the miRNA target and released it, allowing it to participate in subsequent amplification cycles. Meanwhile, the dsDNA was gradually digested into fragments by λexo from the 5' phosphorylated end, releasing the newly synthesized DNA strand for participation in subsequent cycles that led to amplification of the fluorescent signal. This approach provided a low limit of detection (LOD) of zeptomolar-level, 85.8 zM, 77.6 zM, 78.9 zM for miRNA-21, miRNA-92a, miRNA-31, respectively. It could distinguish the mismatched targets and achieved three miRNA targets detection run in parallel in one-pot within 2 h. Thus, this fast, simple, and convenient strategy holds great promise as a clinical application for the detection of multiple miRNAs in clinical CRC samples.
Collapse
Affiliation(s)
- Junyue Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Lizhen Ye
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Peng Y, Li R, Yu M, Yi X, Zhu H, Li Z, Yang Y. Electrochemical biosensor for detection of MON89788 gene fragments with spiny trisoctahedron gold nanocrystal and target DNA recycling amplification. Mikrochim Acta 2020; 187:494. [PMID: 32778963 DOI: 10.1007/s00604-020-04467-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
The shape-controlled synthesis of gold nanocrystals via shape induction of hexadecyltrimethylammonium chloride, potassium bromide, and potassium iodide and enantioselective direction of L-cysteine is reported. The resulting gold nanocrystals (STO-Au) offer spiny trisoctahedron nanostructures with good monodispersity and enhanced exposed high-index facets and high catalytic activity. Construction of the electrochemical sensing platform for MON89788 gene involves the modification of STO-Au, thionine (Thi), and labeled bipedal DNA probe 1 or 2 (P1 or P2) for target DNA-induced recycling amplification. In the detection, two surface DNA probes were immobilized on gold electrode via the Au-S bond. Then, hairpin DNA 1 (H1), Thi-STO-Au-P1, and Thi-STO-Au-P2 self-assemble into two-dimensional DNA nanopores (DNPs) on the electrode surface. Target DNA hybridizes with hairpin DNA 2 (H2) to open hairpin structure of H2. The opened H2 binds with H1 in the DNPs to release Thi-STO-Au-P1, Thi-STO-Au-P2, and target DNA by toehold-mediated strand-displacement. The utilization of target DNA-induced recycling allows one target DNA to release 2N STO-Au-labeled DNA strands, promoting significant signal amplification. The detection signal is further enhanced by the catalyzed redox reaction of Thi with STO-Au. The differential pulse voltammetric signal, best measured at - 0.18 V vs. Ag/AgCl, decreases linearly with increasing concentration of MON89788 in the range 0.02-8 × 104 fM, and the detection limit is 0.0048 fM (S/N = 3). The proposed method was successfully applied for electrochemical detection of MON89788 gene fragments in the PCR products from genetically modified soybean. Graphical Abstract We develop l-cysteine controlled synthesis of spiny trisoctahedron gold nanocrystals with good monodispersity and highly exposed high-index facets. The architecture achieves to ultrahigh catalytic activity. The electrochemical biosensor based on gold nanocrystals and target DNA recycling amplification provides advantage of sensitivity, repeatability, and regeneration-free.
Collapse
Affiliation(s)
- Yuanfeng Peng
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ruiyi Li
- , Lihu Road 1800, Wuxi, 214122, Jiangsu, China
| | - Minyi Yu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaowen Yi
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haiyan Zhu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zaijun Li
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yongqiang Yang
- National Graphene Product Quality Supervision and Inspection Center, Jiangsu Province Special Equipment Safety Supervision and Inspection Institute Branch, Wuxi, 214071, China.
| |
Collapse
|
24
|
Zhang D, Yan Y, Que H, Yang T, Cheng X, Ding S, Zhang X, Cheng W. CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sens 2020; 5:557-562. [PMID: 32013399 DOI: 10.1021/acssensors.9b02461] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A rapid and sensitive isothermal method is crucial for point-of-care (POC) nucleic acid testing. Recently, RNA-guided CRISPR/Cas12a proteins were discovered to exhibit target-triggered nonspecific single-stranded deoxyribonuclease (ssDNase) activity. Herein, the ssDNase cleavage capacity of the CRISPR/Cas12a system for interfacial hairpin DNA (hpDNA) and linear DNA was investigated in detailed. A novel electrochemical DNA biosensor was then developed via target-induced Cas12a cleaving interfacial hpDNA. In this strategy, the RNA-guided target DNA binding activates the robust Cas12a ssDNase activity. The immobilized hpDNA electrochemical reporters with a low surface coverage and incompact morphological structure present accessible substrates for highly efficient Cas12a cleavage, leading to a highly sensitive electrochemical DNA biosensor. Under the optimal conditions, as low as 30 pM target DNA was detected in about 60 min with 3.5 orders of magnitude dynamic range from 50 pM to 100 nM. Furthermore, the practical application ability of the established sensing method for detecting the target in complex matrices was also demonstrated. The proposed strategy enables rapid and sensitive DNA determination, providing a potential tool for POC molecular diagnostics.
Collapse
Affiliation(s)
- Decai Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Laboratory Diagnosis, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Haiying Que
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiuming Zhang
- Department of Laboratory Diagnosis, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|