1
|
Gilroy C, Silver CD, Kunstmann-Olsen C, Miller LM, Johnson SD, Krauss TF. A passive blood separation sensing platform for point-of-care devices. NPJ BIOSENSING 2025; 2:19. [PMID: 40322246 PMCID: PMC12048346 DOI: 10.1038/s44328-025-00038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025]
Abstract
The blood test is one of the most performed investigations in clinical practice, with samples typically analysed in a centralised laboratory. Many of these tests monitor routine conditions that would benefit from a point-of-care approach, reducing the burden on practitioners, patients and healthcare systems. Such a decentralised model requires the development of sophisticated, yet easy-to-use technology; however, platforms that combine high-performance with low-cost and simplicity remain scarce. Moreover, most research papers only address a subset of requirements and study specific aspects in isolation. A systems approach that considers the interplay between each element of the technology is clearly required to develop a coherent solution. Here, we present such a systems approach in the context of testing for C-reactive protein (CRP), a commonly requested test in clinical practise that indicates inflammation and is particularly relevant for monitoring patients with chronic diseases, e.g. those with rheumatoid arthritis or who are undergoing cancer therapy. The approach we take here features an entirely passive microfluidic cartridge for blood separation, integrated with a high-performance sensing platform which we have tested in a real-world context. The device is compatible with a handheld detection unit and is simple to use yet can accurately detect CRP levels at clinically relevant levels.
Collapse
Affiliation(s)
- Cameron Gilroy
- Hull York Medical School, Siwards Way, University of York, Heslington, York UK
- School of Physics and Technology, University of York, Heslington, York UK
| | - Callum D. Silver
- School of Physics and Technology, University of York, Heslington, York UK
| | - Casper Kunstmann-Olsen
- School of Physics and Technology, University of York, Heslington, York UK
- Mads Clausen Institute, University of Southern Denmark, Sonderborg, Denmark
| | - Lisa M. Miller
- School of Physics and Technology, University of York, Heslington, York UK
| | - Steven D. Johnson
- School of Physics and Technology, University of York, Heslington, York UK
| | - Thomas F. Krauss
- School of Physics and Technology, University of York, Heslington, York UK
| |
Collapse
|
2
|
Barth I, Lee H. Nanophotonic sensing and label-free imaging of extracellular vesicles. LIGHT, SCIENCE & APPLICATIONS 2025; 14:177. [PMID: 40295495 PMCID: PMC12037801 DOI: 10.1038/s41377-025-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging, with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection, highlighting their respective advantages and limitations. Key topics include: (i) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ii) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (iii) a detailed comparison of resonance characteristics, including amplitude, quality factor, and evanescent field enhancement; and (iv) the relationship between sensitivity, near-field enhancement, and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms, discussing their fabrication, integration potential, and suitability for various analyte sizes. It aims to offer a unified, application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging, aiming at addressing topics of interest for both photonics experts and potential users of these technologies.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Wang H, Fang X, Wang Y, Zhang Y, Lin R, Ou F, Gu H, Xu H. Improving the Sensitivity of a Multiplexed Digital Immunoassay Based on Extremely High Bead Analysis Efficiency. ACS Sens 2025; 10:1289-1297. [PMID: 39915261 DOI: 10.1021/acssensors.4c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The development of a detection methodology with high sensitivity, stability, and user-friendliness for quantification of proteins at subfemtogram levels is essential for clinical applications such as early screening, disease diagnosis, and monitoring disease progression. A traditional micropartition-based digital enzyme-linked immunosorbent assay (dELISA) results in significant bead loss due to intricate partitioning based on Poisson distribution, multistep reaction operations, nonglobal signal recognition, and reading modes, which have not yet achieved the ultimate detection sensitivity. This study introduces an ultrasensitive multiplexed digital immunoassay with extremely high bead analysis efficiency (HiBeA) through integrating the bead transfer strategy in multistep immunoreaction processing and flow cytometry detection mode. Typically, a bead analysis ratio over 95% was achieved, ensuring high sensitivity, efficiency, and stability of the established HiBeA using as few as only 5,000 beads. As a proof of concept, HiBeA was utilized for the multiplexed detection of IL-10 and IL-6, achieving detection limits of 5.9 and 8.8 fg/mL, respectively. This signifies a 3- to 4-fold enhancement in detection sensitivity under the same reaction time while using only 1% of the assay bead number compared to the commercial single-molecule array (SiMoA) system. HiBeA presents ultrasensitivity, robust detection stability based on tailored, multistep operation of immune-reaction, and the ability to perform multiplexed detection, thereby offering substantial prospects for the advancement of ultrasensitive clinical diagnostics.
Collapse
Affiliation(s)
- Heni Wang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| | - Xiaoxia Fang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| | - Yao Wang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| | - Yutong Zhang
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| | - Ruyan Lin
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| | - Feiyang Ou
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 210030, PR China
| |
Collapse
|
4
|
Wijaya SR, Martins A, Morris K, Quinn SD, Krauss TF. Resonant Young's Slit Interferometer for Sensitive Detection of Low-Molecular-Weight Biomarkers. BIOSENSORS 2025; 15:50. [PMID: 39852100 PMCID: PMC11763694 DOI: 10.3390/bios15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
The detection of low-molecular-weight biomarkers is essential for diagnosing and managing various diseases, including neurodegenerative conditions such as Alzheimer's disease. A biomarker's low molecular weight is a challenge for label-free optical modalities, as the phase change they detect is directly proportional to the mass bound on the sensor's surface. To address this challenge, we used a resonant Young's slit interferometer geometry and implemented several innovations, such as phase noise matching and optimisation of the fringe spacing, to maximise the signal-to-noise ratio. As a result, we achieved a limit of detection of 2.9 × 10-6 refractive index units (RIU). We validated our sensor's low molecular weight capability by demonstrating the detection of Aβ-42, a 4.5 kDa peptide indicative of Alzheimer's disease, and reached the clinically relevant pg/mL regime. This system builds on the guided mode resonance modality we previously showed to be compatible with handheld operation using low-cost components. We expect this development will have far-reaching applications beyond Aβ-42 and become a workhorse tool for the label-free detection of low-molecular-weight biomarkers across a range of disease types.
Collapse
Affiliation(s)
- Stefanus Renaldi Wijaya
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| | - Augusto Martins
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| | - Katie Morris
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| | - Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Thomas F. Krauss
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| |
Collapse
|
5
|
Krauss TF, Miller L, Wälti C, Johnson S. Photonic and electrochemical biosensors for near-patient tests-a critical comparison. OPTICA 2024; 11:1408-1418. [PMID: 39610783 PMCID: PMC11601118 DOI: 10.1364/optica.530068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 11/30/2024]
Abstract
Research into diagnostic biosensors is a vibrant field that combines scientific challenge with translational opportunities; innovation in healthcare is of great societal interest and is an essential element of future healthcare provision. Photonic and electrochemical biosensors are the dominant modalities, both scientifically and commercially, yet the two scientific communities largely remain separated and siloed. It seems astute to better understand what the two fields can learn from one another so as to progress the key scientific, translational, and commercial challenges. Here, we provide an analysis of the fundamental operational characteristics of photonic and electrochemical biosensors using a classification based on energy transfer; in photonics, this separates refractive index sensors from fluorescence and vibrational spectroscopy, while in electrochemistry, it distinguishes Faradaic from non-Faradaic processes. This classification allows us to understand some of the key performance characteristics, such as the susceptibility to fouling and dependence on the clinical matrix that is being analyzed. We discuss the use of labels and the ultimate performance limits, and some of the unique advantages of photonics, such as multicolor operation and fingerprinting, and critically evaluate the requirements for translation of these technologies for clinical use. We trust that this critical review will inform future research in biosensors and support both scientific and commercial developments.
Collapse
Affiliation(s)
- Thomas F. Krauss
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York, York, UK
| | - Lisa Miller
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York, York, UK
| | - Christoph Wälti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Steven Johnson
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
6
|
Sahoo PK, Coates E, Silver CD, Li K, Krauss TF. On the reproducibility of electron-beam lithographic fabrication of photonic nanostructures. Sci Rep 2024; 14:8703. [PMID: 38622168 PMCID: PMC11018749 DOI: 10.1038/s41598-024-58842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Photonic nanostructures such as gratings and ring resonators have become ubiquitous building blocks in Photonics. For example, they are used in filters, they resonantly enhance signals and act as grating couplers. Much research effort is invested in using such structures to create novel functionalities, which often employs electron-beam lithography. An intrinsic issue in this field is the ability to accurately achieve a specific operating wavelength, especially for resonant systems, because nanometer-scale variations in feature size may easily detune the device. Here, we examine some of the key fabrication steps and show how to improve the reproducibility of fabricating wavelength scale photonic nanostructures. We use guided mode resonance grating sensors as our exemplar and find that the exposure condition and the development process significantly affect the consistency of the resonance wavelength, amplitude, and sensitivity of the sensor. By having careful control over these factors, we can achieve consistent performance for all the sensors studied, with less than 10% variation in their resonance behaviors. These investigations provide useful guidelines for fabricating nanostructures more reliably and to achieve a higher success rate in exploratory experiments.
Collapse
Affiliation(s)
- Pankaj K Sahoo
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
- Department of Physics, Dhenkanal Autonomous College, Dhenkanal, Odisha, 759001, India.
| | - Eve Coates
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Callum D Silver
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Kezheng Li
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Thomas F Krauss
- Photonics Research Group, School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| |
Collapse
|
7
|
Islam T, Washington P. Non-Invasive Biosensing for Healthcare Using Artificial Intelligence: A Semi-Systematic Review. BIOSENSORS 2024; 14:183. [PMID: 38667177 PMCID: PMC11048540 DOI: 10.3390/bios14040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The rapid development of biosensing technologies together with the advent of deep learning has marked an era in healthcare and biomedical research where widespread devices like smartphones, smartwatches, and health-specific technologies have the potential to facilitate remote and accessible diagnosis, monitoring, and adaptive therapy in a naturalistic environment. This systematic review focuses on the impact of combining multiple biosensing techniques with deep learning algorithms and the application of these models to healthcare. We explore the key areas that researchers and engineers must consider when developing a deep learning model for biosensing: the data modality, the model architecture, and the real-world use case for the model. We also discuss key ongoing challenges and potential future directions for research in this field. We aim to provide useful insights for researchers who seek to use intelligent biosensing to advance precision healthcare.
Collapse
|
8
|
Barth I, Conteduca D, Dong P, Wragg J, Sahoo PK, Arruda GS, Martins ER, Krauss TF. Phase noise matching in resonant metasurfaces for intrinsic sensing stability. OPTICA 2024; 11:354-361. [PMID: 38638165 PMCID: PMC11023067 DOI: 10.1364/optica.510524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 04/20/2024]
Abstract
Interferometry offers a precise means of interrogating resonances in dielectric and plasmonic metasurfaces, surpassing spectrometer-imposed resolution limits. However, interferometry implementations often face complexity or instability issues due to heightened sensitivity. Here, we address the necessity for noise compensation and tolerance by harnessing the inherent capabilities of photonic resonances. Our proposed solution, termed "resonant phase noise matching," employs optical referencing to align the phases of equally sensitive, orthogonal components of the same mode. This effectively mitigates drift and noise, facilitating the detection of subtle phase changes induced by a target analyte through spatially selective surface functionalization. Validation of this strategy using Fano resonances in a 2D photonic crystal slab showcases noteworthy phase stability (σ < 10 - 4 π ). With demonstrated label-free detection of low-molecular-weight proteins at clinically relevant concentrations, resonant phase noise matching presents itself as a potentially valuable strategy for advancing scalable, high-performance sensing technology beyond traditional laboratory settings.
Collapse
Affiliation(s)
- Isabel Barth
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Donato Conteduca
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Pin Dong
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Jasmine Wragg
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Pankaj K. Sahoo
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| | - Guilherme S. Arruda
- Sao Carlos School of Engineering, Department of Electrical and Computer Engineering, University of Sao Paulo, Sao Carlos-SP 13566-590, Brazil
| | - Emiliano R. Martins
- Sao Carlos School of Engineering, Department of Electrical and Computer Engineering, University of Sao Paulo, Sao Carlos-SP 13566-590, Brazil
| | - Thomas F. Krauss
- School of Physics Engineering and Technology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
9
|
Barth I, Lee H. Phase-driven progress in nanophotonic biosensing. LIGHT, SCIENCE & APPLICATIONS 2024; 13:76. [PMID: 38494520 PMCID: PMC10944832 DOI: 10.1038/s41377-024-01415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge2Sb2Te5 layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10-7 RIU.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
10
|
Bakshi S, Li K, Dong P, Barth I, Kunstmann-Olsen C, Johnson S, Krauss TF. Bio-inspired polydopamine layer as a versatile functionalisation protocol for silicon-based photonic biosensors. Talanta 2024; 268:125300. [PMID: 37857107 DOI: 10.1016/j.talanta.2023.125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Photonic biosensors have made major advances in recent years, achieving very high sensitivity, and progressing towards point-of-care deployment. By using photonic resonances, sensors can be label-free, which is particularly attractive for a low-cost technological realisation. A key remaining issue is the biological interface and the efficient and reliable immobilisation of binder molecules such as antibodies; many protocols are currently in use that have led to widely varying sensor performance. Here, we study a very simple and robust surface functionalisation protocol for silicon photonics, which is based on polydopamine, and we demonstrate both its simplicity and its high performance. The use of polydopamine (PDA) is inspired by molluscs, especially mussels, that employ dopamine to adhere to virtually any surface, especially in an aqueous environment. We studied the versatility of the PDA protocol by showing compatibility with 5 different disease biomarkers (Immunoglobulin (IgG), C-reactive protein (CRP), Tumour Necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Matrix metalloproteinase (MMP-9) and show that the protocol is resistant to hydrolysis during incubation; the loss of functionality due to hydrolysis is a major issue for many of the functionalisation protocols commonly used for silicon-based sensors. The study using guided mode resonance-based sensors highlights the wide dynamic range of the protocol (0.01 ng/mL to 1 μg/mL), using IgG, CRP and MMP-9 protein biomarkers as exemplars. In addition, we show that the surface chemistry allows performing measurements in 10% human serum with a sensitivity as low as 10 ng/mL for IgG. We suggest that adopting this protocol will make it easier for researchers to achieve biofunctionalisation and that the biosensor community will be able to achieve more consistent results.
Collapse
Affiliation(s)
- Shrishty Bakshi
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
| | - Kezheng Li
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Pin Dong
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Isabel Barth
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | | | - Steven Johnson
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Thomas F Krauss
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| |
Collapse
|
11
|
Lin JC, Zhou ZY, Cheng YC, Chang IN, Lin CE, Wu CC. Solution-Induced Degradation of the Silicon Nanobelt Field-Effect Transistor Biosensors. BIOSENSORS 2024; 14:65. [PMID: 38391984 PMCID: PMC10886492 DOI: 10.3390/bios14020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Field-effect transistor (FET)-based biosensors are powerful analytical tools for detecting trace-specific biomolecules in diverse sample matrices, especially in the realms of pandemics and infectious diseases. The primary concern in applying these biosensors is their stability, a factor directly impacting the accuracy and reliability of sensing over extended durations. The risk of biosensor degradation is substantial, potentially jeopardizing the sensitivity and selectivity and leading to inaccurate readings, including the possibility of false positives or negatives. This paper delves into the documented degradation of silicon nanobelt FET (NBFET) biosensors induced by buffer solutions. The results highlight a positive correlation between immersion time and the threshold voltage of NBFET devices. Secondary ion mass spectrometry analysis demonstrates a gradual increase in sodium and potassium ion concentrations within the silicon as immersion days progress. This outcome is ascribed to the nanobelt's exposure to the buffer solution during the biosensing period, enabling ion penetration from the buffer into the silicon. This study emphasizes the critical need to address buffer-solution-induced degradation to ensure the long-term stability and performance of FET-based biosensors in practical applications.
Collapse
Affiliation(s)
- Jung-Chih Lin
- Department of Integrated Chinese and Western Medicine, Chung Shan Medical University Hospital, and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zhao-Yu Zhou
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| | - Yi-Ching Cheng
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| | - I-Nan Chang
- Department of Electronic Engineering, Feng Chia University, Taichung 40724, Taiwan;
| | - Chu-En Lin
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| | - Chi-Chang Wu
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan; (Z.-Y.Z.); (Y.-C.C.)
| |
Collapse
|
12
|
Chiang CC, Tseng WC, Tsai WT, Huang CS. Handheld Biosensor System Based on a Gradient Grating Period Guided-Mode Resonance Device. BIOSENSORS 2023; 14:21. [PMID: 38248398 PMCID: PMC10813047 DOI: 10.3390/bios14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Handheld biosensors have attracted substantial attention for numerous applications, including disease diagnosis, drug dosage monitoring, and environmental sensing. This study presents a novel handheld biosensor based on a gradient grating period guided-mode resonance (GGP-GMR) sensor. Unlike conventional GMR sensors, the proposed sensor's grating period varies along the device length; hence, the resonant wavelength varies linearly along the device length. If a GGP-GMR sensor is illuminated with a narrow band of light at normal incidence, the light resonates and reflects at a specific period but transmits at other periods; this can be observed as a dark band by using a complementary metal oxide semiconductor (CMOS) underneath the sensor. The concentration of a target analyte can be determined by monitoring the shift of this dark band. We designed and fabricated a handheld device incorporating a light-emitting diode (LED) light source, the necessary optics, an optofluidic chip with an embedded GGP-GMR sensor, and a CMOS. LEDs with different beam angles and bandpass filters with different full width at half maximum values were investigated to optimize the dark band quality and improve the accuracy of the subsequent image analysis. Substrate materials with different refractive indices and waveguide thicknesses were also investigated to maximize the GGP-GMR sensor's figure of merit. Experiments were performed to validate the proposed handheld biosensor, which achieved a limit of detection (LOD) of 1.09 × 10-3 RIU for bulk solution measurement. The sensor's performance in the multiplexed detection of albumin and creatinine solutions at concentrations of 0-500 μg/mL and 0-10 mg/mL, respectively, was investigated; the corresponding LODs were 0.66 and 0.61 μg/mL.
Collapse
Affiliation(s)
| | | | | | - Cheng-Sheng Huang
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (C.C.C.); (W.-C.T.); (W.-T.T.)
| |
Collapse
|
13
|
Bakshi S, Sahoo PK, Li K, Johnson S, Raxworthy MJ, Krauss TF. Nanophotonic and hydrogel-based diagnostic system for the monitoring of chronic wounds. Biosens Bioelectron 2023; 242:115743. [PMID: 37826878 DOI: 10.1016/j.bios.2023.115743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Chronic wounds present a major healthcare burden, yet most wounds are only assessed superficially, and treatment is rarely based on the analysis of wound biomarkers. This lack of analysis is based on the fact that sampling of wound biomarkers is typically invasive, leading to a disruption of the wound bed while biomarker detection and quantification is performed in a remote laboratory, away from the point of care. Here, we introduce the diagnostic element of a novel theranostic system that can non-invasively sample biomarkers without disrupting the wound and that can perform biomarker quantification at the point of care, on a short timescale. The system is based on a thermally switchable hydrogel scaffold that enhances wound healing through regeneration of the wound tissue and allows the extraction of wound biomarkers non-destructively. We demonstrate the detection of two major biomarkers of wound health, i.e., IL-6 and TNF-α, in human matrix absorbed into the hydrogel dressing. Quantification of the biomarkers directly in the hydrogel is achieved using a chirped guided mode resonant biosensor and we demonstrate biomarker detection within the clinically relevant range of pg/mL to μg/mL concentrations. We also demonstrate the detection of IL-6 and TNF-α at concentration 1 ng/mL in hydrogel dressing absorbed with clinical wound exudate samples. The high sensitivity and the wide dynamic range we demonstrate are both essential for the clinical relevance of our system. Our test makes a major contribution towards the development of a wound theranostic for guided treatment and management of chronic wounds.
Collapse
Affiliation(s)
- Shrishty Bakshi
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
| | - Pankaj K Sahoo
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Kezheng Li
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Steven Johnson
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | | | - Thomas F Krauss
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| |
Collapse
|
14
|
Joseph S, Rajpal S, Kar D, Devinder S, Pandey S, Mishra P, Joseph J. Guided mode resonance immunosensor for label-free detection of pathogenic bacteria Pseudomonas aeruginosa. Biosens Bioelectron 2023; 241:115695. [PMID: 37776624 DOI: 10.1016/j.bios.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Photonic biosensors are promising platforms for the rapid detection of pathogens with the potential to replace conventional diagnostics based on microbiological culturing methods. Intricately designed sensing elements with robust architectures can offer highly sensitive detection at minimal development cost enabling rapid adoption in low-resource settings. In this work, an optical detection scheme is developed by structuring guided mode resonance (GMR) on a highly stable, transparent silicon nitride (SiN) substrate and further biofunctionalized to identify a specific bacteria Pseudomonas aeruginosa. The resonance condition of the GMR chip is optimized to have relatively high bulk sensitivity with a good quality factor. The biofunctionalization aims at oriented immobilization of specific antibodies to allow maximum bacteria attachment and improved specificity. The sensitivity of the assays is evaluated for clinically relevant concentrations ranging from 102 to 108 CFU/mL. From the calibration curves, the sensitivity of the chip is extracted as 0.134nm/Log10 [concentration], and the detection modality possesses a favorably good limit of detection (LOD) 89 CFU/mL. The use of antibodies as a biorecognition element complemented with a good figure of merit of GMR sensing element allows selective bacteria identification compared to other non-specific pathogenic bacteria that are relevant for testing physiological samples. Our developed GMR biosensor is low-cost, easy to handle, and readily transformable into a portable handheld detection modality for remote usage.
Collapse
Affiliation(s)
- Shereena Joseph
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Debashree Kar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shital Devinder
- Centre for Sensors, Instruments and Cyber Physical System Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Saurabh Pandey
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Joby Joseph
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, India; Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
15
|
Brasier N, Ates HC, Sempionatto JR, Cotta MO, Widmer AF, Eckstein J, Goldhahn J, Roberts JA, Gao W, Dincer C. A three-level model for therapeutic drug monitoring of antimicrobials at the site of infection. THE LANCET. INFECTIOUS DISEASES 2023; 23:e445-e453. [PMID: 37348517 DOI: 10.1016/s1473-3099(23)00215-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/24/2023]
Abstract
The silent pandemic of bacterial antimicrobial resistance is a leading cause of death worldwide, prolonging hospital stays and raising health-care costs. Poor incentives to develop novel pharmacological compounds and the misuse of antibiotics contribute to the bacterial antimicrobial resistance crisis. Therapeutic drug monitoring (TDM) based on blood analysis can help alleviate the emergence of bacterial antimicrobial resistance and effectively decreases the risk of toxic drug concentrations in patients' blood. Antibiotic tissue penetration can vary in patients who are critically or chronically ill and can potentially lead to treatment failure. Antibiotics such as β-lactams and glycopeptides are detectable in non-invasively collectable biofluids, such as sweat and exhaled breath. The emergence of wearable sensors enables easy access to these non-invasive biofluids, and thus a laboratory-independent analysis of various disease-associated biomarkers and drugs. In this Personal View, we introduce a three-level model for TDM of antibiotics to describe concentrations at the site of infection (SOI) by use of wearable sensors. Our model links blood-based drug measurement with the analysis of drug concentrations in non-invasively collectable biofluids stemming from the SOI to characterise drug concentrations at the SOI. Finally, we outline the necessary clinical and technical steps for the development of wearable sensing platforms for SOI applications.
Collapse
Affiliation(s)
- Noé Brasier
- Institute for Translational Medicine, ETH Zurich, Zurich, Switzerland; Department of Digitalization & ICT, University Hospital Basel, Basel, Switzerland.
| | - H Ceren Ates
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany; Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg, Germany
| | - Juliane R Sempionatto
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Menino O Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas F Widmer
- Department of Infectious Disease and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Jens Eckstein
- Department of Digitalization & ICT, University Hospital Basel, Basel, Switzerland; Division for Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Jörg Goldhahn
- Institute for Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, QLD, Australia; Department of Pharmacy and Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Division of Anaesthesiology, Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Can Dincer
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany; Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Kraft FA, Lehmann S, Di Maria C, Joksch L, Fitschen-Östern S, Fuchs S, Dell'Olio F, Gerken M. Intensity-Based Camera Setup for Refractometric and Biomolecular Sensing with a Photonic Crystal Microfluidic Chip. BIOSENSORS 2023; 13:687. [PMID: 37504086 PMCID: PMC10377058 DOI: 10.3390/bios13070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Label-free sensing is a promising approach for point-of-care testing devices. Among optical transducers, photonic crystal slabs (PCSs) have positioned themselves as an inexpensive yet versatile platform for label-free biosensing. A spectral resonance shift is observed upon biomolecular binding to the functionalized surface. Commonly, a PCS is read out by a spectrometer. Alternatively, the spectral shift may be translated into an intensity change by tailoring the system response. Intensity-based camera setups (IBCS) are of interest as they mitigate the need for postprocessing, enable spatial sampling, and have moderate hardware requirements. However, they exhibit modest performance compared with spectrometric approaches. Here, we show an increase of the sensitivity and limit of detection (LOD) of an IBCS by employing a sharp-edged cut-off filter to optimize the system response. We report an increase of the LOD from (7.1 ± 1.3) × 10-4 RIU to (3.2 ± 0.7) × 10-5 RIU. We discuss the influence of the region of interest (ROI) size on the achievable LOD. We fabricated a biochip by combining a microfluidic and a PCS and demonstrated autonomous transport. We analyzed the performance via refractive index steps and the biosensing ability via diluted glutathione S-transferase (GST) antibodies (1:250). In addition, we illustrate the speed of detection and demonstrate the advantage of the additional spatial information by detecting streptavidin (2.9 µg/mL). Finally, we present the detection of immunoglobulin G (IgG) from whole blood as a possible basis for point-of-care devices.
Collapse
Affiliation(s)
- Fabio Aldo Kraft
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118 Kiel, Germany
| | - Stefanie Lehmann
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Carmela Di Maria
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy
| | - Leonie Joksch
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Stefanie Fitschen-Östern
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Kiel University, 24105 Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Kiel University, 24105 Kiel, Germany
| | - Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
17
|
Kraft FA, Baur H, Bommer M, Latz A, Fitschen-Oestern S, Fuchs S, Gerken M. Label-free multiplex sensing from buffer and immunoglobulin G sensing from whole blood with photonic crystal slabs using angle-tuning of an optical interference filter. BIOMEDICAL OPTICS EXPRESS 2023; 14:2293-2310. [PMID: 37206136 PMCID: PMC10191658 DOI: 10.1364/boe.489138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023]
Abstract
Direct detection of biomarkers from unpurified whole blood has been a challenge for label-free detection platforms, such as photonic crystal slabs (PCS). A wide range of measurement concepts for PCS exist, but exhibit technical limitations, which render them unsuitable for label-free biosensing with unfiltered whole blood. In this work, we single out the requirements for a label-free point-of-care setup based on PCS and present a wavelength selecting concept by angle tuning of an optical interference filter, which fulfills these requirements. We investigate the limit of detection (LOD) for bulk refractive index changes and obtain a value of 3.4 E-4 refractive index units (RIU). We demonstrate label-free multiplex detection for different types of immobilization entities, including aptamers, antigens, and simple proteins. For this multiplex setup we detect thrombin at a concentration of 6.3 µg/ml, antibodies of glutathione S-transferase (GST) diluted by a factor of 250, and streptavidin at a concentration of 33 µg/ml. In a first proof of principle experiment, we demonstrate the ability to detect immunoglobulins G (IgG) from unfiltered whole blood. These experiments are conducted directly in the hospital without temperature control of the photonic crystal transducer surface or the blood sample. We set the detected concentration levels into a medical frame of reference and point out possible applications.
Collapse
Affiliation(s)
- Fabio A. Kraft
- Integrated Systems and Photonics, Faculty of Engineering,
Kiel University, Germany
- Kiel Nano, Surface and Interface Science KiNSIS,
Kiel University, Germany
| | | | | | - Andreas Latz
- Integrated Systems and Photonics, Faculty of Engineering,
Kiel University, Germany
- Novatec Immundiagnostica GmbH, Dietzenbach, Germany
| | | | - Sabine Fuchs
- Kiel Nano, Surface and Interface Science KiNSIS,
Kiel University, Germany
- University Hospital Schleswig-Holstein, Kiel University, Germany
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering,
Kiel University, Germany
- Kiel Nano, Surface and Interface Science KiNSIS,
Kiel University, Germany
| |
Collapse
|
18
|
Nan X, Yang L, Cui Y. Lateral Flow Immunoassay for Proteins. Clin Chim Acta 2023; 544:117337. [PMID: 37044163 DOI: 10.1016/j.cca.2023.117337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Protein biomarkers are useful for disease diagnosis. Identification thereof using in vitro diagnostics such as lateral flow immunoassays (LFIAs) has attracted considerable attention due to their low cost and ease of use especially in the point of care setting. Current challenges, however, do remain with respect to material selection for each component in the device and the synergistic integration of these components to display detectable signals. This review explores the principle of LFIA for protein biomarkers, device components including biomaterials and labeling methods. Medical applications and commercial status are examined as well. This review highlights critical methodologies in the development of new LFIAs and their role in advancing healthcare worldwide.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
19
|
Zhou Y, Luo M, Zhao X, Li Y, Wang Q, Liu Z, Guo J, Guo Z, Liu J, Wu X. Asymmetric tetramer metasurface sensor governed by quasi-bound states in the continuum. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1295-1307. [PMID: 39677591 PMCID: PMC11636488 DOI: 10.1515/nanoph-2023-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/22/2023] [Indexed: 12/17/2024]
Abstract
Asymmetric metasurfaces supporting quasi-bound states in the continuum (BICs) with high Q-factors and strong light-matter interaction properties are attractive platforms for label-free biosensing applications. Recently, various meta-atom geometries have been exploited to support sharp high-Q quasi-BIC resonance. However, which meta-atom design may be a better practical choice remains unclear. Here, we compared several established meta-atom designs to address this issue by conducting an extensive theoretical discussion on sensing capability and fabrication difficulty. We theoretically revealed that the tetramer meta-atom geometry produces a higher surface sensitivity and exhibits a larger size-to-wavelength ratio than other meta-atom schemes. Furthermore, we found that metasurfaces with a higher depth considerably enhance surface sensitivity. The performance of two asymmetric tetramer metasurfaces (ATMs) with different heights was demonstrated experimentally. Both shallow and thick ATM structures exhibit sharp high Q-factor resonances with polarization-insensitive features. Notably, the surface sensitivity is 1.62 times for thick ATM compared to that for shallow ones. The combination of properties opens new opportunities for developing biosensing or chemical-sensing applications with high performance.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Man Luo
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Xuyang Zhao
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Yuxiang Li
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Qi Wang
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Zhiran Liu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Junhong Guo
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Zhihe Guo
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Junjie Liu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| | - Xiang Wu
- Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai200433, P. R. China
| |
Collapse
|
20
|
Chandrasekar N, Balaji R, Perala RS, Nik Humaidi NZ, Shanmugam K, Liao YC, Hwang MT, Govindaraju S. A Brief Review of Graphene-Based Biosensors Developed for Rapid Detection of COVID-19 Biomarkers. BIOSENSORS 2023; 13:307. [PMID: 36979519 PMCID: PMC10046683 DOI: 10.3390/bios13030307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/24/2023]
Abstract
The prevalence of mutated species of COVID-19 antigens has provided a strong impetus for identifying a cost-effective, rapid and facile strategy for identifying the viral loads in public places. The ever-changing genetic make-up of SARS-CoV-2 posts a significant challenfge for the research community to identify a robust mechanism to target, bind and confirm the presence of a viral load before it spreads. Synthetic DNA constructs are a novel strategy to design complementary DNA sequences specific for antigens of interest as in this review's case SARS-CoV-2 antigens. Small molecules, complementary DNA and protein-DNA complexes have been known to target analytes in minimal concentrations. This phenomenon can be exploited by nanomaterials which have unique electronic properties such as ballistic conduction. Graphene is one such candidate for designing a device with a very low LOD in the order of zeptomolar and attomolar concentrations. Surface modification will be the significant aspect of the device which needs to have a high degree of sensitivity at the same time as providing a rapid signaling mechanism.
Collapse
Affiliation(s)
- Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Ramachandran Balaji
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ramaswamy Sandeep Perala
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Nik Zulkarnine Nik Humaidi
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Kirubanandan Shanmugam
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Michael Taeyoung Hwang
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Saravanan Govindaraju
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
- Department of Bio Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| |
Collapse
|
21
|
Redox-labelled detection probe enabled immunoassay for simultaneous detection of multiple cancer biomarkers. Mikrochim Acta 2023; 190:86. [PMID: 36757491 DOI: 10.1007/s00604-023-05663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/15/2023] [Indexed: 02/10/2023]
Abstract
Some of the cancer biomarkers often lack specificity and sensitivity; thus, simultaneous detection of multiple biomarkers can make the diagnosis more accurate. Also, simple sensing system without utilization of extra reagents like mediator or substrate during detection event is desirable for point-of-care testing. To address this, mediator and substrate-free amperometric biosensor for simultaneous detection of cancer biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) have been demonstrated by designing two different redox-labelled detection probes. Colloidal nanoparticles of polyaniline-pectin conjugated with AFP antibody along with ferrocene and silver nanoparticles conjugated with CEA antibody along with anthraquinone were used as redox probes to bind with AFP and CEA during the detection event. Sensor constructed using carboxylic acid tethered polyaniline as immobilization matrix displayed 5 times wider linear range than conventional polyaniline for AFP and CEA detection by sandwich electrochemical assay. The detection limit was 30 pg mL-1 for AFP and 80 pg mL-1 for CEA. The biosensor displayed appropriate sensitivity, good specificity, and negligible cross-reactivity between the two targets. The proposed sensor was used to determine APF and CEA in human blood serum. The strategy demonstrated can be further extended for detection of panel of cancer biomarkers by designing appropriate redox probes.
Collapse
|
22
|
Simone G. Trends of Biosensing: Plasmonics through Miniaturization and Quantum Sensing. Crit Rev Anal Chem 2023; 54:2183-2208. [PMID: 36601882 DOI: 10.1080/10408347.2022.2161813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite being extremely old concepts, plasmonics and surface plasmon resonance-based biosensors have been increasingly popular in the recent two decades due to the growing interest in nanooptics and are now of relevant significance in regards to applications associated with human health. Plasmonics integration into point-of-care devices for health surveillance has enabled significant levels of sensitivity and limit of detection to be achieved and has encouraged the expansion of the fields of study and market niches devoted to the creation of quick and incredibly sensitive label-free detection. The trend reflects in wearable plasmonic sensor development as well as point-of-care applications for widespread applications, demonstrating the potential impact of the new generation of plasmonic biosensors on human well-being through the concepts of personalized medicine and global health. In this context, the aim here is to discuss the potential, limitations, and opportunities for improvement that have arisen as a result of the integration of plasmonics into microsystems and lab-on-chip over the past five years. Recent applications of plasmonic biosensors in microsystems and sensor performance are analyzed. The final analysis focuses on the integration of microfluidics and lab-on-a-chip with quantum plasmonics technology prospecting it as a promising solution for chemical and biological sensing. Here it is underlined how the research in the field of quantum plasmonic sensing for biological applications has flourished over the past decade with the aim to overcome the limits given by quantum fluctuations and noise. The significant advances in nanophotonics, plasmonics and microsystems used to create increasingly effective biosensors would continue to benefit this field if harnessed properly.
Collapse
Affiliation(s)
- Giuseppina Simone
- Chemical Engineering, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
23
|
Luo M, Zhou Y, Zhao X, Li Y, Guo Z, Yang X, Zhang M, Wang Y, Wu X. Label-Free Bound-States-in-the-Continuum Biosensors. BIOSENSORS 2022; 12:1120. [PMID: 36551087 PMCID: PMC9775062 DOI: 10.3390/bios12121120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/03/2023]
Abstract
Bound states in the continuum (BICs) have attracted considerable attentions for biological and chemical sensing due to their infinite quality (Q)-factors in theory. Such high-Q devices with enhanced light-matter interaction ability are very sensitive to the local refractive index changes, opening a new horizon for advanced biosensing. In this review, we focus on the latest developments of label-free optical biosensors governed by BICs. These BICs biosensors are summarized from the perspective of constituent materials (i.e., dielectric, metal, and hybrid) and structures (i.e., grating, metasurfaces, and photonic crystals). Finally, the current challenges are discussed and an outlook is also presented for BICs inspired biosensors.
Collapse
Affiliation(s)
- Man Luo
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yi Zhou
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xuyang Zhao
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yuxiang Li
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhihe Guo
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xi Yang
- The Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu 640041, China
| | - Meng Zhang
- The Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu 640041, China
| | - You Wang
- The Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited, Southwest Institute of Technical Physics, Chengdu 640041, China
| | - Xiang Wu
- The Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Firoozbakhtian A, Rezayan AH, Hajghassem H, Rahimi F, Ghazani MF, Kalantar M, Mohamadsharifi A. Buried-Gate MWCNT FET-Based Nanobiosensing Device for Real-Time Detection of CRP. ACS OMEGA 2022; 7:7341-7349. [PMID: 35252724 PMCID: PMC8892644 DOI: 10.1021/acsomega.1c07271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
C-reactive protein (CRP), an acute-phase protein synthesized in the liver in response to inflammation, is one of the biomarkers used for the detection of several diseases. Sepsis and cardiovascular diseases are two of the most important diseases for which detection of CRP at very early stages in the clinical range can help avert serious consequences. Here, a CNT-based nanobiosensing system, which is portable and reproducible, is used for label-free, online detection of CRP. The system consists of an aptameric CNT-based field-effect transistor benefiting from a buried gate geometry with Al2O3 as a high dielectric layer and can reflect the pro-cytokine concentration. Test results show that the device responds to CRP changes within 8 min, with a limit of detection as low as 150 pM (0.017 mg L-1). The device was found to have a linear behavior in the range of 0.43-42.86 nM (0.05-5 mg L-1). The selectivity of the device was tested with TNF-α, IL-6, and BSA, to which the nanosensing system showed no significant response compared with CRP. The device showed good stability for 14 days and was completely reproducible during this period. These findings indicate that the proposed portable system is a potential candidate for CRP measurements in the clinical range.
Collapse
Affiliation(s)
- Ali Firoozbakhtian
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Ali Hossein Rezayan
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Hassan Hajghassem
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Fereshteh Rahimi
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Masoud Faraghi Ghazani
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mahsa Kalantar
- Division
of Nanobiotechnology, Department of Life Sciences Engineering, Faculty
of New Sciences and Technologies, University
of Tehran, P.O. Box 14395-1561 Tehran 1439957131, Iran
| | - Amir Mohamadsharifi
- MEMS
& NEMS Laboratory, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
25
|
Gao S, Guisán JM, Rocha-Martin J. Oriented immobilization of antibodies onto sensing platforms - A critical review. Anal Chim Acta 2022; 1189:338907. [PMID: 34815045 DOI: 10.1016/j.aca.2021.338907] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
26
|
Wu J, Dai B, Li Z, Pan T, Zhang D, Lin F. Emerging optofluidic technologies for biodiagnostic applications. VIEW 2021. [DOI: 10.1002/viw.20200035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jiandong Wu
- Bionic Sensing and Intelligence Center Institute of Biomedical and Health Engineering Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Tingrui Pan
- Department of Biomedical Engineering University of California Davis California USA
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai China
| | - Francis Lin
- Department of Physics and Astronomy University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
27
|
Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat Commun 2021; 12:3293. [PMID: 34078903 PMCID: PMC8172834 DOI: 10.1038/s41467-021-23357-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dielectric metasurfaces support resonances that are widely explored both for far-field wavefront shaping and for near-field sensing and imaging. Their design explores the interplay between localised and extended resonances, with a typical trade-off between Q-factor and light localisation; high Q-factors are desirable for refractive index sensing while localisation is desirable for imaging resolution. Here, we show that a dielectric metasurface consisting of a nanohole array in amorphous silicon provides a favourable trade-off between these requirements. We have designed and realised the metasurface to support two optical modes both with sharp Fano resonances that exhibit relatively high Q-factors and strong spatial confinement, thereby concurrently optimizing the device for both imaging and biochemical sensing. For the sensing application, we demonstrate a limit of detection (LOD) as low as 1 pg/ml for Immunoglobulin G (IgG); for resonant imaging, we demonstrate a spatial resolution below 1 µm and clearly resolve individual E. coli bacteria. The combined low LOD and high spatial resolution opens new opportunities for extending cellular studies into the realm of microbiology, e.g. for studying antimicrobial susceptibility. Dielectric metasurfaces have different Q-factor and light localisation requirements for sensing and imaging. Here, the authors present a dielectric metasurface, supporting two optical modes with sharp Fano resonances for high Q-factors and strong spatial confinement, allowing both sensing and imaging.
Collapse
|
28
|
Label-Free Protein Detection by Micro-Acoustic Biosensor Coupled with Electrical Field Sorting. Theoretical Study in Urine Models. SENSORS 2021; 21:s21072555. [PMID: 33917374 PMCID: PMC8038679 DOI: 10.3390/s21072555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
Diagnostic devices for point-of-care (POC) urine analysis (urinalysis) based on microfluidic technology have been actively developing for several decades as an alternative to laboratory based biochemical assays. Urine proteins (albumin, immunoglobulins, uromodulin, haemoglobin etc.) are important biomarkers of various pathological conditions and should be selectively detected by urinalysis sensors. The challenge is a determination of different oligomeric forms of the same protein, e.g., uromodulin, which have similar bio-chemical affinity but different physical properties. For the selective detection of different types of proteins, we propose to use a shear bulk acoustic resonator sensor with an additional electrode on the upper part of the bioliquid-filled channel for protein electric field manipulation. It causes modulation of the protein concentration over time in the near-surface region of the acoustic sensor, that allows to distinguish proteins based on their differences in diffusion coefficients (or sizes) and zeta-potentials. Moreover, in order to improve the sensitivity to density, we propose to use structured sensor interface. A numerical study of this approach for the detection of proteins was carried out using the example of albumin, immunoglobulin, and oligomeric forms of uromodulin in model urine solutions. In this contribution we prove the proposed concept with numerical studies for the detection of albumin, immunoglobulin, and oligomeric forms of uromodulin in urine models.
Collapse
|
29
|
Li K, Gupta R, Drayton A, Barth I, Conteduca D, Reardon C, Dholakia K, Krauss TF. Extended Kalman Filtering Projection Method to Reduce the 3σ Noise Value of Optical Biosensors. ACS Sens 2020; 5:3474-3482. [PMID: 33108735 DOI: 10.1021/acssensors.0c01484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Optical biosensors have experienced a rapid growth over the past decade because of their high sensitivity and the fact that they are label-free. Many optical biosensors rely on tracking the change in a resonance signal or an interference pattern caused by the change in refractive index that occurs upon binding to a target biomarker. The most commonly used method for tracking such a signal is based on fitting the data with an appropriate mathematical function, such as a harmonic function or a Fano, Gaussian, or Lorentz function. However, these functions have limited fitting efficiency because of the deformation of data from noise. Here, we introduce an extended Kalman filter projection (EKFP) method to address the problem of resonance tracking and demonstrate that it improves the tolerance to noise, reduces the 3σ noise value, and lowers the limit of detection (LOD). We utilize the method to process the data of experiments for detecting the binding of C-reactive protein in a urine matrix with a chirped guided mode resonance sensor and are able to improve the LOD from 10 to 1 pg/mL. Our method reduces the 3σ noise value of this measurement compared to a simple Fano fit from 1.303 to 0.015 pixels. These results demonstrate the significant advantage of the EKFP method to resolving noisy data of optical biosensors.
Collapse
Affiliation(s)
- Kezheng Li
- Department of Physics, University of York, York YO10 5DD, U.K
| | - Roopam Gupta
- SUPA, School of Physics and Astronomy, University of St Andrews, Andrews KY16 9SS, U.K
- School of Medicine, University of St Andrews, Andrews KY16 9TF, U.K
| | | | - Isabel Barth
- Department of Physics, University of York, York YO10 5DD, U.K
| | | | | | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, Andrews KY16 9SS, U.K
- Department of Physics, College of Science, Yonsei University, Seoul 03722, South Korea
| | | |
Collapse
|
30
|
Drayton A, Li K, Simmons M, Reardon C, Krauss TF. Performance limitations of resonant refractive index sensors with low-cost components. OPTICS EXPRESS 2020; 28:32239-32248. [PMID: 33114915 DOI: 10.1364/oe.400236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
Abstract
Resonant biosensors are attractive for diagnostics because they can detect clinically relevant biomarkers with high sensitivity and in a label-free fashion. Most of the current solutions determine their detection limits in a highly stabilised laboratory environment, which does, however, not apply to real point-of-care applications. Here, we consider the more realistic scenario of low-cost components and an unstabilised environment and consider the related design implications. We find that sensors with lower quality-factor resonances are more fault tolerant, that a filtered LED lightsource is advantageous compared to a diode laser, and that a CMOS camera is preferable to a CCD camera for detection. We exemplify these findings with a guided mode resonance sensor and experimentally determine a limit of detection of 5.8 ± 1.7×10-5 refractive index units (RIU), which is backed up by a model identifying the various noise sources. Our findings will inform the design of high performance, low cost biosensors capable of operating in a real-world environment.
Collapse
|
31
|
Barth I, Conteduca D, Reardon C, Johnson S, Krauss TF. Common-path interferometric label-free protein sensing with resonant dielectric nanostructures. LIGHT, SCIENCE & APPLICATIONS 2020; 9:96. [PMID: 32509300 PMCID: PMC7264974 DOI: 10.1038/s41377-020-0336-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 05/04/2023]
Abstract
Research toward photonic biosensors for point-of-care applications and personalized medicine is driven by the need for high-sensitivity, low-cost, and reliable technology. Among the most sensitive modalities, interferometry offers particularly high performance, but typically lacks the required operational simplicity and robustness. Here, we introduce a common-path interferometric sensor based on guided-mode resonances to combine high performance with inherent stability. The sensor exploits the simultaneous excitation of two orthogonally polarized modes, and detects the relative phase change caused by biomolecular binding on the sensor surface. The wide dynamic range of the sensor, which is essential for fabrication and angle tolerance, as well as versatility, is controlled by integrating multiple, tuned structures in the field of view. This approach circumvents the trade-off between sensitivity and dynamic range, typical of other phase-sensitive modalities, without increasing complexity. Our sensor enables the challenging label-free detection of procalcitonin, a small protein (13 kDa) and biomarker for infection, at the clinically relevant concentration of 1 pg mL-1, with a signal-to-noise ratio of 35. This result indicates the utility for an exemplary application in antibiotic guidance, and opens possibilities for detecting further clinically or environmentally relevant small molecules with an intrinsically simple and robust sensing modality.
Collapse
Affiliation(s)
- Isabel Barth
- Department of Physics, University of York, YO10 5DD York, UK
| | | | | | - Steven Johnson
- Department of Electronic Engineering, University of York, YO10 5DD York, UK
| | | |
Collapse
|