1
|
Yang J, Chen J, Xia L, Li G. Recent progress on biosensors for detection of circulating miRNA biomarkers. Talanta 2025; 294:128219. [PMID: 40311478 DOI: 10.1016/j.talanta.2025.128219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/22/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Circulating miRNAs are a class of non-coding endogenous RNAs found in body fluids which typically consist of 19-24 nucleotides in length. The abnormal expression of miRNAs has been demonstrated to be associated with severe human diseases. Aiming to provide valuable insights for the further development of reliable miRNA detectors for disease early diagnosis and treatment, this work systematically summarizes the latest advancements in signal amplification strategies for miRNA analysis, based on nanomaterials, nucleic acids, enzymes, and CRISPR/Cas system. The emerging techniques for detecting circulating miRNAs in human body fluids over the past decade are highlighted, including electrochemical, optical, and dual-mode biosensors. Furthermore, the challenges of trace miRNA detection in complex samples and the development prospects of miRNA biosensors are also discussed.
Collapse
Affiliation(s)
- Jianping Yang
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510303, China; School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Chen
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510303, China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Rouhi S, Ghasemi H, Alizadeh M, Movahedpour A, Vahedi F, Fattahi M, Aiiashi S, Khatami SH. miRNA-based electrochemical biosensors for ovarian cancer. Clin Chim Acta 2025; 564:119946. [PMID: 39214394 DOI: 10.1016/j.cca.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.
Collapse
Affiliation(s)
- Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen S, Zhao J, Xu C, Shi B, Xu J, Hu S, Zhao S. Lysosomes Initiating and DNAzyme-Assisted Intracellular Signal Amplification Strategy for Quantification of Alpha-Fetoprotein in a Single Cell. Anal Chem 2024; 96:85-91. [PMID: 38128902 DOI: 10.1021/acs.analchem.3c03152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cellular trace proteins are critical for maintaining normal cell functions, with their quantitative analysis in individual cells aiding our understanding of the role of cell proteins in biological processes. This study proposes a strategy for the quantitative analysis of alpha-fetoprotein in single cells, utilizing a lysosome microenvironment initiation and a DNAzyme-assisted intracellular signal amplification technique based on electrophoretic separation. A nanoprobe targeting lysosomes was prepared, facilitating the intracellular signal amplification of alpha-fetoprotein. Following intracellular signal amplification, the levels of alpha-fetoprotein (AFP) in 20 HepG2 hepatoma cells and 20 normal HL-7702 hepatocytes were individually evaluated using microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF). Results demonstrated overexpression of alpha-fetoprotein in hepatocellular carcinoma cells. This strategy represents a novel technique for single-cell protein analysis and holds significant potential as a powerful tool for such analyses.
Collapse
Affiliation(s)
- Shengyu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunhuan Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Bingfang Shi
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, China
| | - Jiayao Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
4
|
Fan X, Yao X, Qiu M, Wu K, Deng A, Li J. Electrochemiluminescence resonance energy transfer immunoassay based on a porphyrin metal-organic framework and AuNPs/NSG for the sensitive detection of zearalenone. Analyst 2023; 148:5691-5697. [PMID: 37823327 DOI: 10.1039/d3an01418e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this study, a novel electrochemiluminescence resonance energy transfer (ECL-RET) immunoassay was developed for the first time for the detection of zearalenone (ZEN). A porphyrin metal-organic framework (PCN-222), an emerging porphyrin-based ECL luminophore, was prepared by a simple hydrothermal method using tetrakis(4-carboxyphenyl) porphyrin, which has excellent ECL emission as well as good ECL efficiency. Because the ECL emission spectrum of PCN-222 is highly matched to the absorption spectrum of gold nanoparticle-modified graphene oxide (AuNPs/NSG) nanocomposites, they were used as donor-acceptor counterparts in this work for the ECL-RET strategy. Under optimal conditions, the ECL immunosensor showed a sensitive response to ZEN in a wide detection range, with a linearity of 0.0005-1000 ng mL-1 and a detection limit of 0.15 pg mL-1. In addition, the sensor showed good potential for application in the detection of wheat and corn samples, providing a new approach for the detection of mycotoxin-like contaminants such as ZEN in food grains.
Collapse
Affiliation(s)
- Xiaolin Fan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Xun Yao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, P.R. China
| | - Mengqi Qiu
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
5
|
Ma G, Peng L, Zhang S, Wu K, Deng A, Li J. Electrochemiluminescence immunoassay strategies based on a hexagonal Ru-MOF and MoS 2@GO nanosheets: detection of 5-fluorouracil in serum samples. Analyst 2023; 148:1694-1702. [PMID: 36916172 DOI: 10.1039/d3an00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Herein, a competitive-type electrochemiluminescence immunosensor for ultrasensitive detection of 5-fluorouracil (5-FU) was fabricated. Ruthenium(II)-metal-organic framework (Ru-MOF) nanosheets were selected to act a promising ECL luminophore using tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as the organic ligand. The two-dimensional (2D) Ru-MOF nanosheets achieved an increased loading of Ru(dcbpy)32+ and effectively prevented leakage of the ECL emitter during application, which exhibited satisfactory ECL performance. Thin two-dimensional MoS2@GO was used to modify the electrode as the sensing platform for improving the electron transfer rate and loading more 5-FU coating antigens due to its large specific surface area and piezoelectric catalytic efficiency. Under the optimized conditions, the proposed immunosensor presented high sensitivity, a wide detection range (0.0001 ng-100 ng mL-1), a low limit of detection (0.031 pg mL-1, S/N = 3), good specificity and stability. Furthermore, the immunosensor was successfully applied for the detection of 5-FU in human serum samples with satisfactory results, proving this strategy has potential applications in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Guoyu Ma
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Lu Peng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - SunXiaoYi Zhang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
6
|
Zhang Q, Wang Y, Wang W, Min Q, Zhang JR, Zhu JJ. A Telomerase-Assisted Strategy for Regeneration of DNA Nanomachines in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202213884. [PMID: 36478372 DOI: 10.1002/anie.202213884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
DNA nanomachines have been engineered into diverse personalized devices for diagnostic imaging of biomarkers; however, the regeneration of DNA nanomachines in living cells remains challenging. Here, we report an ingenious DNA nanomachine that can implement telomerase (TE)-activated regeneration in living cells. Upon apurinic/apyrimidinic endonuclease 1 (APE1)-responsive initiation of the nanomachine, the walker of the nanomachine moves along tracks regenerated by TE, generating multiply amplified signals through which APE1 can be imaged in situ. Additionally, augmentation of the signal due to the regeneration of the nanomachines could reveal differential expression of TE in different cell lines. To the best of our knowledge, this is the first proof-of-concept demonstration of the use of biomarkers to assist in the regeneration of nanomachines in living cells. This study offers a new paradigm for the development of more applicable and efficient DNA nanomachines.
Collapse
Affiliation(s)
- Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing, 210089, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Yoo SM, Jeon YM, Heo SY. Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances. BIOSENSORS 2022; 12:bios12090738. [PMID: 36140123 PMCID: PMC9496345 DOI: 10.3390/bios12090738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/03/2023]
Abstract
Electrochemiluminescence (ECL)-based sensing systems rely on light emissions from luminophores, which are generated by high-energy electron transfer reactions between electrogenerated species on an electrode. ECL systems have been widely used in the detection and monitoring of diverse, disease-related biomarkers due to their high selectivity and fast response times, as well as their spatial and temporal control of luminance, high controllability, and a wide detection range. This review focuses on the recent strategic and technological advances in ECL-based biomarker detection systems. We introduce several sensing systems for medical applications that are classified according to the reactions that drive ECL signal emissions. We also provide recent examples of sensing strategies and technologies based on factors that enhance sensitivity and multiplexing abilities as well as simplify sensing procedures. This review also discusses the potential strategies and technologies for the development of ECL systems with an enhanced detection ability.
Collapse
|
8
|
Wang C, Hu F, Zou X, Wang Y, Ren Y, Tan J. Lanthanide Ce(III)/Tb(III) bimetallic coordination polymer as an advanced electrochemiluminescence emitter for epinephrine sensing application. Talanta 2022; 248:123621. [PMID: 35661844 DOI: 10.1016/j.talanta.2022.123621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
Abstract
By rationally introducing Ce(III) and Tb(III) into a coordination polymer (CP), a series of lanthanide bimetallic coordination polymers (Tb:Ce-BCPs) has been prepared in this work. Compared with pure Tb-CP and Ce-CP, bimetallic Tb:Ce-BCPs show stronger and more stable ECL intensity, which is mainly attributed to the "dual sensitization effect" combined with the energy transfer from Ce(III) to Tb(III) and the antenna effect from the ligand to the center atoms of Ce(III) and Tb(III). In the meantime, after explore the ECL intensity and morphologies of all these Tb:Ce-BCPs, the results show that the morphologies and ECL intensities of Tb:Ce-BCPs can be adjusted by doping different molar ratios of Ce(III) in Tb:Ce-BCP. Excitingly, Ce(III) can also act as a co-reaction accelerator, effectively promoting S2O82- to generate more SO4•-, thereby enhancing the ECL intensity of Tb:Ce-BCP. That is to say, Ce(III) plays a triple role in Tb:Ce-BCP. Furthermore, the ECL strength of Tb:Ce-BCP decreased by only 1.8% and 3.5%, respectively after the modified electrode was scanned for 800 s and stored for one month. Enlightened by the excellent ECL properties of Tb:Ce-BCP, we modified Tb:Ce-BCP directly on the surface of electrode, and explored its application in electroanalytical chemistry through the detection of epinephrine (EP) and the detection limit is 33 fmol L-1. Significantly, our ECL sensing strategy promotes the application of lanthanides in ECL sensor and opens vast possibilities for the synthesis of a new generation of ECL emitter in electroanalytical fields.
Collapse
Affiliation(s)
- Cun Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Fangxin Hu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Xiaochuan Zou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Yuqiu Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Yanrong Ren
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| |
Collapse
|
9
|
Ji Y, Guo J, Ye B, Peng G, Zhang C, Zou L. An ultrasensitive carcinoembryonic antigen electrochemical aptasensor based on 3D DNA nanoprobe and Exo III. Biosens Bioelectron 2022; 196:113741. [PMID: 34736103 DOI: 10.1016/j.bios.2021.113741] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
In this study, a highly ordered three dimensional (3D) DNA nanostructure was self-assembled by label-free DNA nanotweezers, which was used as recognized probe to interact with target. Once the target was recognized by the 3D DNA nanoprobe (3D DNT), DNA nanotweezers opened to release target analog (T1). This recognition process was proceeded in homogeneous solution, which can avoid complex electrode modification and improve reaction efficiency. Then these target analogs were captured by the signal DNA probes (E1) modified on the electrode. In the assistance of Exo III, E1 was digested and the T1 was released to participate in the next cycle to realize signal amplification. Finally, an ultrasensitive carcinoembryonic antigen (CEA) electrochemical biosensing with a detection limit of 4.88 fg mL-1 was developed.
Collapse
Affiliation(s)
- Yanli Ji
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaxin Guo
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guanghua Peng
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chi Zhang
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
10
|
Song S, Li N, Bai L, Gai P, Li F. Photo-Assisted Robust Anti-Interference Self-Powered Biosensing of MicroRNA Based on Pt-S Bonds and the Inorganic-Organic Hybridization Strategy. Anal Chem 2022; 94:1654-1660. [PMID: 35025211 DOI: 10.1021/acs.analchem.1c04135] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photo-assisted biofuel cell-based self-powered biosensors (PBFC-SPBs) possess the advantages of no need for external power supply, ease of sensing design, and simple instruments. In this work, a robust anti-interference PBFC-SPB for microRNA detection was constructed based on the Pt-S bond and the inorganic-organic hybridization strategy. The organic semiconductor [6,6]-phenyl-C61-butyric acid methylester@anthraquinone (PCBM@anthraquinone) served as an efficient light-harvesting material, and gold nanoparticle@Pt (AuNP@Pt) nanomaterials were immobilized on the surface via electrostatic adsorption for the binding of DNA. Notably, compared to Au-S bonds for DNA immobilization, the Pt-S bond exhibited better anti-interference ability. Ingeniously, cadmium sulfide quantum dots (CdS QDs) were close to the PCBM@anthraquinone substrate electrode to form sensitization structures, which was beneficial to enhance the photocurrent signal. Combining with the laccase-mimicking activity Cu2+/carbon nanotubes (Cu2+/CNTs) cathode, the PBFC-SPB for microRNA detection was achieved. Once the target existed, the identical sequence complementary microRNA would make DNA2/CdS dissociate and break away from the electrode, leading to a low signal. The linear detection range was 10 fM-100 pM, with the limit of determination of 2.4 fM (3S/N). The as-proposed strategy not only paves a new way for the design of photoelectrochemical biosensing but also opens a door for the construction of robust anti-interference bioassay for microRNA detection.
Collapse
Affiliation(s)
- Shichao Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Lipeng Bai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
11
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
12
|
Zhou X, Li M, Niu S, Han J, Chen S, Xie G. Copper nanocluster-Ru(dcbpy) 32+ as a cathodic ECL-RET probe combined with 3D bipedal DNA walker amplification for bioanalysis. Analyst 2022; 148:114-119. [DOI: 10.1039/d2an01321e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, an intra-molecular ECL-RET probe combining the 3D bipedal DNA walker amplification strategy was exquisitely designed to monitor platelet-derived growth factor BB (PDGF-BB).
Collapse
Affiliation(s)
- Xumei Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Mingjing Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Shengfang Niu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
13
|
Mo F, Han Q, Chen M, Meng H, Guo J, Fu Y. Novel optoelectronic metal organic framework material perylene tetracarboxylate magnesium: preparation and biosensing. NANOSCALE 2021; 13:16244-16250. [PMID: 34549218 DOI: 10.1039/d1nr03300j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The pursuit for improving photoelectrochemical (PEC) performances of organic materials remains an urgent need. Here, we have proposed an envision of the preparation the metal-organic frameworks (MOFs) with arenes to realize high photo-to-current conversion efficiency and excellent PEC performances. Magnesium 3,4,9,10-perylene tetracarboxylic acid metal-organic frameworks (Mg-PTCA MOFs) were synthesized for the first time. The uniformly distributed and regular-shaped Mg-PTCA MOFs showed a much more stable and higher photocurrent than the single PTCA and its derivatives, which confirmed our hypothesis. A regenerated-biosensor was designed for microRNA analysis based on Mg-PTCA MOFs as a novel photoelectric material, target-triggered three-dimensional DNA Scaffold (3D-Sca) as an efficient signal amplifier, and gold nanoclusters (Au NCs) as quencher. The elaborately designed biosensor achieved ultrasensitive detection for miRNA 21 with a dynamic range from 10 aM to 10 pM and a detection limit of 2.8 aM. This biosensor showed good analytical performance in the extracts of different cancer cells, indicating the possibility for early diagnosis, timely staging assessment, and accurate prognostic judgment for diseases. The recommendable performances of Mg-PTCA MOFs highlight the significance of organic MOFs in PEC sensing.
Collapse
Affiliation(s)
- Fangjing Mo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Qian Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hui Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiang Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Xia M, Zhou F, Feng X, Sun J, Wang L, Li N, Wang X, Wang G. A DNAzyme-Based Dual-Stimuli Responsive Electrochemiluminescence Resonance Energy Transfer Platform for Ultrasensitive Anatoxin-a Detection. Anal Chem 2021; 93:11284-11290. [PMID: 34342436 DOI: 10.1021/acs.analchem.1c02417] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective and precise electrochemiluminescence resonance energy transfer (ECL-RET), including the efficient regulation over the proximity of a donor and an acceptor and the reliable stimuli responsive as well as the avoidance of undesirable probes leakage, etc., is significant for the development of an accurate and sensitive ECL detection method; yet, the current literature in documentation involves only a limited range of such ECL-RET systems. Herein, we propose an ECL-RET strategy with dually quenched ultralow background signals and a dual-stimuli responsive, accurate signal output for the ultrasensitive and reliable detection of anatoxin-a (ATX-a). The dual quenching is accomplished by an integrated ECL-RET probe of metal organic frameworks (MOFs) encapsulated into Ru(bpy)32+ (Ru-MOF) (donor) coated with silver nanoparticles (AgNPs) shell (acceptor 1) and close proximity with DNA-ferrocene (Fc) (acceptor 2). Multistimuli responsive DNAzyme facilitated the accurate signal switch by both target ATX-a and hydrogen peroxide (H2O2). Because of the specific recognition of the aptamer toward ATX-a, an intricate design of the DNA sequence enabled the exposure of the Ag+-dependent DNAzyme sequence and H2O2 in situ generated Ag+ triggering a catalytic cleavage reaction to freely release the two ECL-RET energy acceptors, thus switching the ECL signal significantly and achieving ultrasensitive detection. It is noteworthy that AgNPs are key in this ECL-RET strategy, serving both as the gate-keepers for avoiding ECL probes leakage and also the ECL energy acceptors, and mostly importantly serving as the redox substrate for the subsequent DNAzyme catalytic signal switch. The proposed ECL-RET aptasensor for ATX-a detection displayed splendid monitoring performance with a quite low detection limit of 0.00034 mg mL-1. This sensor not only led to the development of a dual-quenching ECL-RET system but also provided meaningful multistimuli responsive ECL biosensing platform construction, which shows a promising application prospect in complicated sample analysis.
Collapse
Affiliation(s)
- Mengmeng Xia
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fu Zhou
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiuyun Feng
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jiahui Sun
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Li Wang
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Na Li
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
15
|
Ning Z, Chen M, Wu G, Zhang Y, Shen Y. Recent advances of functional nucleic acids-based electrochemiluminescent sensing. Biosens Bioelectron 2021; 191:113462. [PMID: 34198172 DOI: 10.1016/j.bios.2021.113462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022]
Abstract
Electroluminescence (ECL) has been used in extensive applications ranging from bioanalysis to clinical diagnosis owing to its simple device requirement, low background, high sensitivity, and wide dynamic range. Nucleic acid is a significant theme in ECL bioanalysis. The inherent versatile selective molecular recognition of nucleic acids and their programmable self-assembly make it desirable for the robust construction of nanostructures. Benefiting from their unique structures and physiochemical properties, ECL biosensing based on nucleic acids has experienced rapid growth. This review focuses on recent applications of nucleic acids in ECL sensing systems, particularly concerning the employment of nucleic acids as molecular recognition elements, signal amplification units, and sensing interface schemes. In the end, an outlook of nucleic acid-based ECL biosensing will be provided for future developments and directions. We envision that nucleic acids, which act as an essential component for both bioanalysis and clinical diagnosis, will provide a new thinking model and driving force for developing next-generation sensing systems.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Mengyuan Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China; Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Chen X, Deng Y, Cao G, Xiong Y, Huo D, Hou C. Ultra-sensitive MicroRNA-21 detection based on multiple cascaded strand displacement amplification and CRISPR/Cpf1 (MC-SDA/CRISPR/Cpf1). Chem Commun (Camb) 2021; 57:6129-6132. [PMID: 34038492 DOI: 10.1039/d1cc01938d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNA-21 (miR-21) has been considered as a potential biomarker for cancer diagnosis and prognosis due to its high expression in tumors. Here, an analytical method which integrates the multiple cascaded strand displacement amplification and CRISPR/Cpf1 (MC-SDA/CRISPR/Cpf1) was proposed to ultra-sensitively detect it.
Collapse
Affiliation(s)
- Xiaolong Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yuanyi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. and Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. and Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
17
|
Cao Y, Ma C, Zhu JJ. DNA Technology-assisted Signal Amplification Strategies in Electrochemiluminescence Bioanalysis. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Guo Y, Liu S, Yang H, Wang P, Feng Q. Proximity binding-triggered multipedal DNA walker for the electrochemiluminescence detection of telomerase activity. Anal Chim Acta 2021; 1144:68-75. [DOI: 10.1016/j.aca.2020.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
|
19
|
Han S, Zhao Y, Zhang Z, Xu G. Recent Advances in Electrochemiluminescence and Chemiluminescence of Metal Nanoclusters. Molecules 2020; 25:molecules25215208. [PMID: 33182342 PMCID: PMC7664927 DOI: 10.3390/molecules25215208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Metal nanoclusters (NCs), including Au, Ag, Cu, Pt, Ni and alloy NCs, have become more and more popular sensor probes with good solubility, biocompatibility, size-dependent luminescence and catalysis. The development of electrochemiluminescent (ECL) and chemiluminescent (CL) analytical methods based on various metal NCs have become research hotspots. To improve ECL and CL performances, many strategies are proposed, from metal core to ligand, from intermolecular electron transfer to intramolecular electron transfer. Combined with a variety of amplification technology, i.e., nanostructure-based enhancement and biological signal amplification, highly sensitive ECL and CL analytical methods are developed. We have summarized the research progresses since 2016. Also, we discuss the current challenges and perspectives on the development of this area.
Collapse
Affiliation(s)
- Shuang Han
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Yuhui Zhao
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
| | - Zhichao Zhang
- School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.H.); (Y.Z.)
- Correspondence: (Z.Z.); (G.X.)
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Correspondence: (Z.Z.); (G.X.)
| |
Collapse
|