1
|
Liu T, Zhang W, Zhang Y, Liu Y, Gao S, Zuo Y, Zhu L, Li C, Yu Y. A Cascaded Chip for the High-Purity Capture and Distinguishing Detection of Phenotypic Circulating Tumor Cells in Colon Cancer. Anal Chem 2025; 97:3972-3980. [PMID: 39933075 DOI: 10.1021/acs.analchem.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The low abundance, complex phenotypes, and need for sophisticated blood preprocessing pose substantial obstacles to the clinical implementation of circulating tumor cells (CTCs). Herein, we constructed a cascaded PMMA chip-based platform for the separation of CTCs from other cells within blood samples, as well as distinguishing the detection of epithelial and mesenchymal CTCs. The primary physical separation chip (PS-Chip) focused and sorted CTCs from whole blood via Dean flow fractionation (DFF) according to size differences between CTCs and other blood cells, being capable of eliminating approximately 93.7% of red blood cells (RBCs) and 68.4% of white blood cells (WBCs) from whole blood while maintaining a CTC recovery rate of around 90%. Subsequently, to further purify the isolated CTCs in the upstream, a partitioned immunoaffinity capture and detection chip (PICD-Chip) featuring with two independent chambers (Zone 1, Zone 2) was designed, each of which was premodified with Gel-GO/E/V-Apt complexes that specifically recognize CTCs with distinct phenotypes, enabling further separation of residual blood cells from the upstream isolation. Upon the subsequent introduction of two detection probes, namely EpCAM and vimentin aptamer-modified mesoporous Pt nanoparticles (mPtNPs/E/V-Apt), into Zone 1 and Zone 2, respectively, heterogeneous CTCs ranging from 5 to 200/mL captured within two chambers were distinguished and quantified utilizing the exceptional peroxidase activity of mPtNPs. The integrated approach of efficient enrichment and differentiation detection of phenotypic CTCs under the requirement of high purity has enabled the successful application of the cascaded chip in the diagnosis of colon cancer patients at different stages.
Collapse
Affiliation(s)
- Tingting Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenmeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shuai Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingchun Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Liang Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
2
|
Zhang Y, Scholten D, Qiang W, Platanias LC, Gradishar WJ, Kelley SO, Liu H. Circulation tumor cell isolation and enrichment technologies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2025; 392:119-149. [PMID: 40287218 DOI: 10.1016/bs.ircmb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
During cancer metastasis, tumor cells migrate from the primary tumor site and spread to distant tissue or organs through the circulatory system of the body. While it is challenging to track metastatic tumor cells, circulating tumor cells (CTCs) via liquid biopsy provide a unique and important opportunity for longitudinal monitoring of residual cancer diseases and progression, showing great potential to facilitate precision medicine in cancer patients. The enumeration and characterization of CTCs represent prognostic and predictive biomarkers, which can be used to monitor the response to and efficacy of various therapies. Along with molecular and cellular features of CTCs, this data can inform the detection of early micro-metastases and assess progression of advanced disease in a more sensitive manner than traditional imaging modalities, serving as a complementary approach with added value. Nevertheless, comprehensive multiomic analyses of CTCs at inter-cellular (cluster), single-cell, and subcellular levels to elucidate relevant CTC cancer biology, tumor immune ecosystem biology, and clinical outcomes have yet to be achieved, demanding multidisciplinary collaboration to advance the field. Complementary to the published chapter on multiomic analyses and functional properties of CTCs, this chapter summarizes key methods and integrated strategies in CTC isolation, highlighting an accelerated evolution in high-throughput analysis of CTCs.
Collapse
Affiliation(s)
- Youbin Zhang
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - David Scholten
- Driskill Graduate Program (DGP) in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Wenan Qiang
- Chemistry of Life Processes, Chicago, IL, United States
| | - Leonidas C Platanias
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - William J Gradishar
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shana O Kelley
- Chemistry of Life Processes, Chicago, IL, United States; Department of Chemistry, Northwestern University, Chicago, IL, United States; Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States; Chan Zuckerberg Biohub Chicago, Chicago, IL, United States
| | - Huiping Liu
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Chan Zuckerberg Biohub Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Zhao Y, Pan Y, Sun H, Huo P, Wang G, Liu S. A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection. BIOSENSORS 2024; 14:472. [PMID: 39451685 PMCID: PMC11505997 DOI: 10.3390/bios14100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Detecting circulating tumor cells has exhibited great significance in treating cancers since its concentration is an index strongly associated with the development and transfer of the tumor. However, the present commercial method for CTC detection is still expensive, because special antibodies and complicated devices must be used for cell separation and imaging. Hence, it is quite necessary to apply alternative materials and methods to decrease the cost of CTC detection. In this article, we coated a cellulose acetate membrane with nanoparticles formed by the polymerization of melamine and furfural, creating a surface with nanoscale roughness for the highly efficient capture of the sparse CTCs in a blood sample. Subsequently, the CTCs on the surface can be quantitatively detected by colorimetry with the aid of a COF-based nanozyme. The detection limit (LOD) can be as low as 3 cells/mL, which is the lowest LOD among the colorimetric methods to our knowledge. Considering the low cost of fabricating the membrane for CTC capture and the robustness of nanozymes compared with natural enzymes, this CTC detection approach displays great potential to decrease the financial burden of commercial CTC detection.
Collapse
Affiliation(s)
- Yize Zhao
- Key Laboratory of Bio-Based Materials Science & Technology (Ministry of Education), College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Yaqi Pan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Hao Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology (Ministry of Education), College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Guangtong Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Shaoqin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
4
|
Wang X, Du Y, Jing W, Cao C, Wu X, Yang K, Zhu L. Fluorescent identification of immunomagnetically captured CTCs using triplex-aptamer-targeted dendritic SiO 2@Fe 3O 4 nanocomposite. Mikrochim Acta 2024; 191:424. [PMID: 38922365 DOI: 10.1007/s00604-024-06504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The enumeration of circulating tumor cells (CTCs) in peripheral blood plays a crucial role in the early diagnosis, recurrence monitoring, and prognosis assessment of cancer patients. There is a compelling need to develop an efficient technique for the capture and identification of these rare CTCs. However, the exclusive reliance on a single criterion, such as the epithelial cell adhesion molecule (EpCAM) antibody or aptamer, for the specific recognition of epithelial CTCs is not universally suitable for clinical applications, as it usually falls short in identifying EpCAM-negative CTCs. To address this limitation, we propose a straightforward and cost-effective method involving triplex fluorescently labelled aptamers (FAM-EpCAM, Cy5-PTK7, and Texas Red-CSV) to modify Fe3O4-loaded dendritic SiO2 nanocomposite (dmSiO2@Fe3O4/Apt). This multi-recognition-based strategy not only enhanced the efficiency in capturing heterogeneous CTCs, but also facilitated the rapid and accurate identification of CTCs. The capture efficiency of heterogenous CTCs reached up to 93.33%, with a detection limit as low as 5 cells/mL. Notably, the developed dmSiO2@Fe3O4/Apt nanoprobe enabled the swift identification of captured cells in just 30 min, relying solely on the fluorescently modified aptamers, which reduced the identification time by approximately 90% compared with the conventional immunocytochemistry (ICC) technique. Finally, these nanoprobe characteristics were validated using blood samples from patients with various types of cancers.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Yu Du
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Weijun Jing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, P. R. China
| | - Changchun Cao
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Xiaoli Wu
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Kangqun Yang
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China
| | - Liang Zhu
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, 223300, Jiangsu, P. R. China.
| |
Collapse
|
5
|
Li M, Shi J, Zhang Y, Cui S, Zhang L, Shen Q. ECL cytosensor for sensitive and label-free detection of circulating tumor cells based on hierarchical flower-like gold microstructures. Anal Chim Acta 2024; 1303:342505. [PMID: 38609273 DOI: 10.1016/j.aca.2024.342505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The development of sensitive and efficient cell sensing strategies to detect circulating tumor cells (CTCs) in peripheral blood is crucial for the early diagnosis and prognostic assessment of cancer clinical treatment. Herein, an array of hierarchical flower-like gold microstructures (HFGMs) with anisotropic nanotips was synthesized by a simple electrodeposition method and used as a capture substrate to construct an ECL cytosensor based on the specific recognition of target cells by aptamers. The complex topography of the HFGMs array not only catalyzed the enhancement of ECL signals, but also induced the cells to generate more filopodia, improving the capture efficiency and shortening the capture time. The effect of topographic roughness on cell growth and adhesion propensity was also investigated, while the cell capture efficiency was proposed to be an important indicator affecting the accuracy of the ECL cytosensor. In addition, the capture of cells on the electrode surface increased the steric hindrance, which caused ECL signal changes in the Ru(bpy)32+ and TPrA system, realizing the quantitative detection of MCF-7 cells. The detection range of the sensor was from 102 to 106 cells mL-1 and the detection limit was 18 cells mL-1. The proposed detection method avoids the process of separation, labeling and counting, which has great potential for sensitive detection in clinical applications.
Collapse
Affiliation(s)
- Meixing Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Jiawei Shi
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yuhang Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shuaihui Cui
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lei Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
6
|
Ouyang R, Geng C, Li J, Jiang Q, Shen H, Zhang Y, Liu X, Liu B, Wu J, Miao Y. Recent advances in photothermal nanomaterials-mediated detection of circulating tumor cells. RSC Adv 2024; 14:10672-10686. [PMID: 38572345 PMCID: PMC10988362 DOI: 10.1039/d4ra00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Li
- Hunan Shizhuyuan Nonferrous Metals Co., Ltd Chenzhou Hunan 423037 China
| | - Qiliang Jiang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Hongyu Shen
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yulong Zhang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xueyu Liu
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingxiang Wu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
7
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
8
|
Hu Q, Tang D, Li M, Liang X, Zhou J, Meng Y, Wei Y, Yan S, Lin R, Niu X, Zhang L. Hybrid chain reaction and selective recognition-based homogeneous dual-fluorescence analysis of circulating tumor cells in clinical ovarian cancer samples. Anal Chim Acta 2023; 1281:341877. [PMID: 38783734 DOI: 10.1016/j.aca.2023.341877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Oncological analysis is important in tumor diagnosis. We constructed a dual-fluorescence and binary visual analysis system for circulating tumor cells (CTCs) using the folate receptor as a biomarker, combined with hybridization chain reaction and nanomaterial amplification. This strategy integrates terminal protection, selective recognition properties of N-methyl mesoporphyrin IX and CdTe quantum dots for Cu2+ and double-stranded templated copper nanoparticles, and inkjet printing technology. RESULTS In fluorescence mode, folate receptor and A2780 ovarian cancer cells were specifically detected with a limit of detection of 0.1 fg mL-1, and 10 cells mL-1 were observed. The detection limits of both the color and distance reading modes were comparable to those obtained in fluorescence mode. The applicability of the method for quantifying CTCs was validated using 27 (6 negative and 21 positive) clinical ovarian cancer samples; the results agreed with those of both the clinical folate receptor-polymerase chain reaction kit and radiological and pathological results. SIGNIFICANCE This dual-fluorescence and binary visual CTCs detection method provides multiple options for clinical tumor liquid biopsy.
Collapse
Affiliation(s)
- Qian Hu
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Tang
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mei Li
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaodu Liang
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanming Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinhao Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.17 Renmin South Road Section Three, Chengdu, 610041, Sichuan, China
| | - Shixin Yan
- Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ruoyu Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoyu Niu
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
P U A, Raj G, John J, Mohan K M, John F, George J. Aptamers: Features, Synthesis and Applications. Chem Biodivers 2023; 20:e202301008. [PMID: 37709723 DOI: 10.1002/cbdv.202301008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.
Collapse
Affiliation(s)
- Aiswarya P U
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Gopika Raj
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinju John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Malavika Mohan K
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
10
|
Asil SM, Guerrero ED, Bugarini G, Cayme J, De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F, Olmos R, Perches D, Roman J, Salcido-Padilla D, Sanchez E, Trejo C, Trevino P, Nurunnabi M, Narayan M. Theranostic applications of multifunctional carbon nanomaterials. VIEW 2023; 4:20220056. [PMID: 37426287 PMCID: PMC10328449 DOI: 10.1002/viw.20220056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Nanobiotechnology is one of the leading research areas in biomedical science, developing rapidly worldwide. Among various types of nanoparticles, carbon nanomaterials (CNMs) have attracted a great deal of attention from the scientific community, especially with respect to their prospective application in the field of disease diagnosis and therapy. The unique features of these nanomaterials, including favorable size, high surface area, and electrical, structural, optical, and chemical properties, have provided an excellent opportunity for their utilization in theranostic systems. Carbon nanotubes, carbon quantum dots, graphene, and fullerene are the most employed CNMs in biomedical fields. They have been considered safe and efficient for non-invasive diagnostic techniques such as fluorescence imaging, magnetic resonance imaging, and biosensors. Various functionalized CNMs exhibit a great capacity to improve cell targeting of anti-cancer drugs. Due to their thermal properties, they have been extensively used in cancer photothermal and photodynamic therapy assisted by laser irradiation and CNMs. CNMs also can cross the blood-brain barrier and have the potential to treat various brain disorders, for instance, neurodegenerative diseases, by removing amyloid fibrils. This review has summarized and emphasized on biomedical application of CNMs and their recent advances in diagnosis and therapy.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- Department of Environmental Science and Engineering, The University of Texas at El Paso, El Paso, Texas, USA
| | - Erick Damian Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georgina Bugarini
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Joshua Cayme
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Nydia De Avila
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jaime Garcia
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Adrian Hernandez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Julia Mecado
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yazeneth Madero
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Frida Moncayo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rosario Olmos
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - David Perches
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jacob Roman
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Diana Salcido-Padilla
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Efrain Sanchez
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Christopher Trejo
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Paulina Trevino
- BUILDing SCHOLARS, Research Intensive Sequence (FYRIS) students, The University of Texas at El Paso, El Paso, Texas, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
11
|
Vajhadin F, Mazloum-Ardakani M, Hemati M, Moshtaghioun SM. Facile preparation of a cost-effective platform based on ZnFe 2O 4 nanomaterials for electrochemical cell detection. Sci Rep 2023; 13:4962. [PMID: 36973342 PMCID: PMC10042879 DOI: 10.1038/s41598-023-31377-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are important tumor markers that indicate early metastasis, tumor recurrence, and treatment efficacy. To identify and separate these cells from the blood, new nanomaterials need to be developed. The present study explored the potential application of ZnFe2O4 magnetic nanoparticles in capturing CTCs with cell surface markers. Folic acid was coupled to L-cysteine-capped ZnFe2O4 nanoparticles (ZC) to provide binding sites on ZnFe2O4 nanoparticles for the recognition of folate bioreceptors, which are highly expressed in MCF-7 breast cancer cells. The cytotoxicity of ZnFe2O4 nanoparticles and ZC against MCF-7 was analyzed with the MTT assay. After 24 h of incubation, there were IC50 values of 702.6 and 805.5 µg/mL for ZnFe2O4 and ZC, respectively. However, after 48 h of incubation, IC50 values of ZnFe2O4 and ZC were reduced to 267.3 and 389.7 µg/mL, respectively. The cell quantification was conducted with magnetically collected cells placed on a glassy carbon electrode, and the differential pulse voltammetry (DPV) responses were analyzed. This cost-effective ZnFe2O4-based biosensing platform allowed cancer cell detection with a limit of detection of 3 cells/mL, ranging from 25 to 104 cells/mL. In future, these functionalized zinc ferrites may be used in electrochemical cell detection and targeted cancer therapy.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
12
|
Yavari B, Athari SS, Omidi Y, Jalali A, Najafi R. EpCAM aptamer activated 5-FU-loaded PLGA nanoparticles in CRC treatment; in vitro and in vivo study. J Drug Target 2023; 31:296-309. [PMID: 36398476 DOI: 10.1080/1061186x.2022.2148679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, epithelial cell adhesion molecule (EpCAM) aptamer-activated nanoparticles (Ap-NPs) were synthesised to enhance treatment efficiency in colorectal cancer (CRC). PLGA [poly(d, l-lactide-co-glycolide)] copolymer was fabricated by conjugation of COOH-PEG-NH2 to PLGA-COOH through an EDC/NHS-mediated chemistry. Afterwards, 5-fluorouracil-loaded (FU) nanoparticles were prepared using the water/oil/water double emulsion solvent evaporation method. The in vitro cytotoxicity of formulations was evaluated using the MTT assay in HCT-116, CT-26 and HEK-293 cell lines. For in vivo study, tumour-bearing BALB/c mice were established by subcutaneous injection of CT-26 cell line. The results indicated that fabricated AP-FU-NPs had 101 nm size with a spherical surface, relatively homogeneously and, satisfactory encapsulation efficiency (83.93%). In vitro experiments revealed that Ap-FU-NPs had a superior in vitro cytotoxicity than both FU-NPs and free 5-FU in CT-26 and HCT-116 cells but, were significantly low toxic against HEK-293 cells relative to free 5-FU. Furthermore, in vivo results showed no significant haemolytic effect, hepatic and renal injury, or weight loss. After treatment of various animal groups with formulations, notable tumour growth delay was observed following the order: Ap-FU-NPs < FU-NPs < 5-FU < PBS. The results suggest that AP-FU-NPs could be an effective and promising carrier for 5-FU delivery to the EpCAM overexpressing CRC cells.
Collapse
Affiliation(s)
- Bahram Yavari
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Akram Jalali
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
14
|
Zuo Y, Xia Y, Lu W, Li Y, Xiao Y, Gao S, Zhou Z, Xu H, Feng X, Li C, Yu Y. A multifunctional black phosphorus nanosheet-based immunomagnetic bio-interface for heterogeneous circulating tumor cell capture and simultaneous self-identification in gastric cancer patients. NANOSCALE 2023; 15:3872-3883. [PMID: 36722904 DOI: 10.1039/d2nr04277k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A single epithelial cell adhesion molecule (EpCAM) for circulating tumor cell (CTCs) isolation has been proved to be low in efficiency as it fails to recognize EpCAM-negative CTCs. Meanwhile, the current immunocytochemical (ICC) identification strategy for the captured cells is tedious and time-consuming. To address these issues, we designed a dual-labeled fluorescent immunomagnetic nanoprobe (BP-Fe3O4-AuNR/Apt), by loading magnetic Fe3O4 nanoparticles and gold nanorods (AuNRs) onto black phosphorus (BP) nanosheets and then linking them with Cy3-labeled EpCAM and Texas red-labeled tyrosine protein kinase 7 (PTK7) aptamers, which created a high-performance bio-interface for efficient, heterogeneous CTC capture and rapid self-identification with high accuracy. As few as 5 CTCs could be captured from 1.0 mL PBS, mixed cell solution and lysed blood. What's more, the presence of BP and AuNRs on this capturing interface also allowed us to preliminarily investigate the potential photothermal therapeutic effect of the probe toward CTC elimination. The applicability of the probe was further demonstrated in gastric cancer patients. By detecting the number of CTCs in the blood of gastric cancer patients, the correlations between the CTC number and the disease stage, as well as distant metastasis were systematically explored.
Collapse
Affiliation(s)
- Yifan Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Wenwen Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yue Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yang Xiao
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Shuai Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhiyi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Xingqing Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
15
|
Synthesis and characterization of folate-functionalized silica-based materials and application for bioimaging of cancer cells. Heliyon 2023; 9:e13207. [PMID: 36747548 PMCID: PMC9898064 DOI: 10.1016/j.heliyon.2023.e13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Early-stage detection is a vital factor in the later treatment and prognosis of cancer. Enhancing the sensitivity and specificity of the cancer detection pathological and experimental approaches can affect the morbidity and mortality of this disease. A folic acid (FA)-functionalized silica quantum dots (SiQDs)/KCC-NH2@SiO2 nanomaterials were synthesized and characterized as a bioimaging agent of the MCF 7 cancer cells. These nanoparticles showed biocompatible nature with specificity towards folate receptor (FR)-overexpressed MCF 7 cancer cells. Viability findings suggested that the SiQDs/KCC-NH2@SiO2/FA nanomaterials have nontoxic nature towards the cells in the concentration of 200 μg/mL. Fluorescence microscopy images were utilized to estimate the cell internalization of the nanoparticles and further verified by the flow cytometry technique. The differentiation ability of the nanoparticles was also approved by incubation with FR-negative HEK 293 normal cells. The SiQDs/KCC-NH2@SiO2/FA nanoparticle exhibited high stability, bright and high quantum yield fluorescence emission, proposing as a high-quality material for in vivo bioimaging of FR-overexpressed circulating tumoral cancer cells (CTCs).
Collapse
|
16
|
Aptamer-mediated DNA concatemer functionalized magnetic nanoparticles for reversible capture and release of circulating tumor cells. Colloids Surf B Biointerfaces 2022; 218:112733. [DOI: 10.1016/j.colsurfb.2022.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
17
|
Li R, Li D, Wang H, Chen K, Wang S, Xu J, Ji P. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther 2022; 13:149. [PMID: 35395782 PMCID: PMC8994256 DOI: 10.1186/s13287-022-02823-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Bone defects caused by diseases and trauma are usually accompanied by inflammation, and the implantation of biomaterials as a common repair method has also been found to cause inflammatory reactions, which affect bone metabolism and new bone formation. This study investigated whether exosomes from adipose-derived stem cells (ADSC-Exos) plays an immunomodulatory role in traumatic bone defects and elucidated the underlying mechanisms. METHODS ADSC-Exos were loaded by a biomaterial named gelatine nanoparticles (GNPs), physical and chemical properties were analysed by zeta potential, surface topography and rheology. A rat model of skull defect was used for our in vivo studies, and micro-CT and histological staining were used to analyse histological changes in the bone defect area. RT-qPCR and western blotting were performed to verify that ADSC-Exos could regulate M1/M2 macrophage polarization. MicroRNA (miRNA) array analysis was conducted to determine the miRNA expression profiles of ADSC-Exos. After macrophages were treated with a miR-451a mimic, miR-451a inhibitor and ISO-1, the relative expression of genes and proteins was measured by RT-qPCR and western blotting. RESULTS In vivo, micro-CT and histological staining showed that exosome-loaded GNPs (GNP-Exos) hydrogel, with good biocompatibility and strong mechanical adaptability, exhibited immunomodulatory effect mainly by regulating macrophage immunity and promoting bone tissue healing. Immunofluorescence further indicated that ADSC-Exos reduced M1 marker (iNOS) expression and increased M2 marker (CD206) expression. Moreover, in vitro studies, western blotting and RT-qPCR showed that ADSC-Exos inhibited M1 macrophage marker expression and upregulated M2 macrophage marker expression. MiR-451a was enriched in ADSC-Exos and targeted macrophage migration inhibitory factor (MIF). Macrophages treated with the miR-451a mimic showed lower expression of M1 markers. In contrast, miR-451a inhibitor treatment upregulated the expression of M1 markers and downregulated the expression of M2 markers, while ISO-1 (a MIF inhibitor) treatment upregulated miR-451a expression and downregulated M1 macrophage marker expression. CONCLUSION GNP-Exos can effectively regulate bone immune metabolism and further promote bone healing partly through immune regulation of miR-451a, which may provide a therapeutic direction for bone repair.
Collapse
Affiliation(s)
- Rui Li
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Dize Li
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Si Wang
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| | - Jie Xu
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| | - Ping Ji
- Department of Pediatric Dentistry, The College of Stomatology, Chongqing Medical University, No. 426, North Songshi Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Chen P, He Y, Liu T, Li F, Huang K, Tang D, Jiang P, Wang S, Zhou J, Huang J, Xie Y, Wei Y, Chen J, Hu W, Ying B. Homogeneous two-dimensional visual and fluorescence analysis of circulating tumor cells in clinical samples via steric hindrance regulated enzymes recognition cleavage and elongation. Biosens Bioelectron 2022; 202:114009. [DOI: 10.1016/j.bios.2022.114009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
|
19
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
20
|
Chen R, Chen X, Zhou Y, Lin T, Leng Y, Huang X, Xiong Y. "Three-in-One" Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis. ACS NANO 2022; 16:3351-3361. [PMID: 35137583 DOI: 10.1021/acsnano.2c00008] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colorimetric lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters has been widely used in point-of-care testing. Nonetheless, the potential of traditional AuNP-based LFIA for the early diagnosis of disease is often compromised by limited sensitivity due to the insufficient colorimetric signal brightness of AuNPs. Herein, we develop a "three-in-one" multifunctional catalytic colorimetric nanohybrid (Fe3O4@MOF@Pt) composed of Fe3O4 nanoparticles, MIL-100(Fe), and platinum (Pt) nanoparticles. Fe3O4@MOF@Pt displays enhanced colorimetric signal brightness, fast magnetic response, and ultrahigh peroxidase-mimicking activity, which are beneficial to the enhancement of the sensitivity of LFIA by coupling with magnetic separation and catalytic amplification. When integrated with the dual-antibody sandwich LFIA platform, the developed Fe3O4@MOF@Pt can achieve an ultrasensitive immunochromatographic assay of procalcitonin with a sensitivity of 0.5 pg mL-1, which is approximately 2280-fold higher than that of conventional AuNP-based LFIA and superior to previously published immunoassays. Therefore, this work suggests that the proposed catalytic colorimetric nanohybrid can act as promising signal reporters to enable ultrasensitive immunochromatographic disease diagnostics.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Tong Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| |
Collapse
|
21
|
Li C, Yang S, Li R, Gong S, Huang M, Sun Y, Xiong G, Wu D, Ji M, Chen Y, Gao C, Yu Y. Dual-Aptamer-Targeted Immunomagnetic Nanoparticles to Accurately Explore the Correlations between Circulating Tumor Cells and Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7646-7658. [PMID: 35104098 DOI: 10.1021/acsami.1c22720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It has been acknowledged that circulating tumor cells (CTCs) are promising biomarkers in liquid biopsy for cancer diagnosis and prognosis. However, the relationship between the CTC number and gastric cancer has scarcely been quantitatively investigated. Moreover, the single criterion of epithelial cell adhesion molecule (EpCAM) antibody/aptamer to specifically recognize epithelial CTCs cannot be universally applied for clinical applications, as it fails to recognize EpCAM-negative CTCs. Herein, we propose simple, low-cost, dual-aptamer (EpCAM and PTK7)-modified immunomagnetic Fe3O4 particles (IMNs) for efficient capture of heterogeneous CTCs and downstream analysis in gastric cancer patients. High PTK7 expression and a significant negative correlation between PTK7 and EpCAM expression were observed in primary gastric cancer tissues. Taking MGC-803 and BGC-823 cells as CTC models, the obtained dual-targeting IMNs could distinguishably recognize these cells with both high or low EpCAM and PTK7 expressions, which enhanced the accuracy of CTC recognition in gastric cancer. More than 95% of these two kinds of cells could be captured within 20 min of incubation, which was significantly more efficient than that of single EpCAM- or PTK7-modified IMNs. With this strategy, as low as five CTCs could be captured from phosphate-buffered saline (PBS), a cell mixture containing THP-1 cells, and lysed blood mediums. Moreover, the obtained CTCs can be used for subsequent gene analysis. Finally, the fabricated IMNs were successfully applied for CTC capture in 1.0 mL of peripheral blood samples from patients with gastric cancer. The detected CTC numbers in 72 participants were found to have close relationships with chemotherapy sensitivity, diagnosis, stage, and distant metastasis of patients. This work provides important references for further investigations on CTC-related diagnosis and individualized treatment.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shenhao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shuyuan Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Meng Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuqing Sun
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guixiang Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dengpan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaojin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yan Chen
- Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China
| | - Chao Gao
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
22
|
Vajhadin F, Mazloum-Ardakani M, Sanati A, Haghniaz R, Travas-Sejdic J. Optical cytosensors for the detection of circulating tumour cells. J Mater Chem B 2022; 10:990-1004. [PMID: 35107117 DOI: 10.1039/d1tb02370e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood analysis is an established approach to monitor various diseases, ranging from heart defects and diabetes to cancer. Among various tumor markers in the blood, circulating tumor cells (CTCs) have received increasing attention due to the fact that they originate directly from the tumors. Capturing and detecting CTCs represents a promising approach in cancer diagnostics and clinical management of cancers. CTCs in blood progress to self-seeding a tumour or initiating a new lesion mass. Cytosensors are biosensors intended to identify CTCs in a blood sample of cancer patients and provide information about the cancer status. Herein, we firstly discuss different detection methods of state-of-the-art optical cytosensors, including colorimetry, fluorescence, surface plasmon resonance, photoelectrochemistry and electrochemiluminescence. Then we review the significant advances made in implementing biorecognition elements and nanomaterials for the detection of cancer cells. Despite great progress in optical cytosensors, and their integration with smartphones, they have still only been explored to prototype stages. Much more effort is needed to fulfil their potential in modern cancer diagnostics and in monitoring the state of disease for cancer patients.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 8915818411, Iran.
| | | | - Alireza Sanati
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand. .,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
23
|
Zheng Y, Tang N, Omar R, Hu Z, Duong T, Wang J, Wu W, Haick H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202105482] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 08/30/2023]
Abstract
AbstractContemporary medicine suffers from many shortcomings in terms of successful disease diagnosis and treatment, both of which rely on detection capacity and timing. The lack of effective, reliable, and affordable detection and real‐time monitoring limits the affordability of timely diagnosis and treatment. A new frontier that overcomes these challenges relies on smart health monitoring systems that combine wearable sensors and an analytical modulus. This review presents the latest advances in smart materials for the development of multifunctional wearable sensors while providing a bird's eye‐view of their characteristics, functions, and applications. The review also presents the state‐of‐the‐art on wearables fitted with artificial intelligence (AI) and support systems for clinical decision in early detection and accurate diagnosis of disorders. The ongoing challenges and future prospects for providing personal healthcare with AI‐assisted support systems relating to clinical decisions are presented and discussed.
Collapse
Affiliation(s)
- Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Ning Tang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Zhipeng Hu
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
- School of Chemistry Xi'an Jiaotong University Xi'an 710126 P. R. China
| | - Tuan Duong
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology Interdisciplinary Research Center of Smart Sensors Xidian University Xi'an 710126 P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
- School of Advanced Materials and Nanotechnology Interdisciplinary Research Center of Smart Sensors Xidian University Xi'an 710126 P. R. China
| |
Collapse
|
24
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
25
|
Liu Y, Wang X, Zhou Y, Yang G, Hou J, Zhou S. Engineered multifunctional metal-phenolic nanocoatings for label-free capture and "self-release" of heterogeneous circulating tumor cells. NANOSCALE 2021; 13:16923-16931. [PMID: 34522934 DOI: 10.1039/d1nr04112f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunomagnetic beads have been widely explored as an important analytical tool for the rapid and sensitive detection of circulating tumor cells (CTCs). However, their clinical application is seriously hindered by the tedious preparation procedures and heterogeneous nature of CTCs. To this end, a designed multifunctional platform named Fe3O4@TA/CuII superparamagnetic nanoparticles (SPMNPs) is expected to have the following features: (i) the formation of a tannic acid-copper (II) ion (TA/CuII) coating which could be accomplished by a one-step method is very simple; (ii) the TA/CuII coating shows high affinity for heterogeneous CTCs and good resistance to nonspecific adhesion of blood cells; (iii) "self-release" of the captured cells could be achieved as the TA/CuII coating gradually degrades in the cell culture environment without any additional interventions. Therefore, the resulting Fe3O4@TA/CuII SPMNPs could capture various CTCs (MCF-7, HepG2 and HeLa cells) with different expression levels of the epithelial cell adhesion molecule (EpCAM). And the capture efficiency and cell purity can reach 88% and 87%, respectively. In addition, 68% of the captured cells are self-released after 6 h of incubation and most of the released cells show high cell proliferation activity. In particular, Fe3O4@TA/CuII SPMNPs can successfully detect 1-13 CTCs from 1 mL of blood of 14 patients with 6 types of cancers. Hence, we expect that the as-prepared Fe3O4@TA/CuII SPMNPs with simple, efficient, and universal yet cost-efficient characteristics could act as a promising analytical tool for clinical CTC detection.
Collapse
Affiliation(s)
- Yiling Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiaoshan Wang
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuwei Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
26
|
Yang W, Fan L, Guo Z, Wu H, Chen J, Liu C, Yan Y, Ding S. Reversible capturing and voltammetric determination of circulating tumor cells using two-dimensional nanozyme based on PdMo decorated with gold nanoparticles and aptamer. Mikrochim Acta 2021; 188:319. [PMID: 34476628 DOI: 10.1007/s00604-021-04927-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
A novel cytosensor was constructed for the ultrasensitive detection and nondestructive release of circulating tumor cells (CTCs) by combining Au nanoparticles-loaded two-dimensional bimetallic PdMo (2D Au@PdMo) nanozymes and electrochemical reductive desorption. The 2D Au@PdMo nanozymes possessed high-efficiency peroxidase-like activity and were assembled with an aptamer composed of a thiol-modified epithelial specific cell adhesion molecule (EpCAM) to strengthen CTCs adhesion. Moreover, the electrode surface was decorated with highly fractal Au nanostructures (HFAuNSs) composites due to the similarity in fractal nanostructure with the CTCs membrane to enhance the CTCs anchoring efficiency and release capability. The captured CTCs could be further efficiently dissociated and nondestructively released from the modified electrodes upon electrochemical reductive desorption. The designed cytosensor showed an excellent analytical performance, with a wide linear range from 2 to 1 × 105 cells mL-1 and low limit of detection (LOD) of 2 cells mL-1 (S/N = 3) at the working potential in the range -0.6 to 0.2 V. A satisfactory CTCs release reaching a range of 93.7-97.4% with acceptable RSD from 3.55 to 6.41% and good cell viability was obtained. Thus, the developed cytosensor might provide a potential alternative to perform CTC-based liquid biopsies, with promising applications in early diagnosis of tumors. Preparation and mechanism of desorption of the cytosensor based on 2D Au@PdMo nanozymes and electrochemical reductive desorption for the detection and release of CTCs. A Preparation procedure of the Apt/Au@PbMo bioconjugates. B Fabrication process of the sandwich-type cytosensor. C Electrochemical signal produced by the Au@PdMo nanozymes. D Mechanism of electrochemical reductive desorption for CTCs release.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Zhen Guo
- Department of Clinical Laboratory, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
27
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
28
|
Wang X, Cheng S, Wang X, Wei L, Kong Q, Ye M, Luo X, Xu J, Zhang C, Xian Y. pH-Sensitive Dye-Based Nanobioplatform for Colorimetric Detection of Heterogeneous Circulating Tumor Cells. ACS Sens 2021; 6:1925-1932. [PMID: 33881313 DOI: 10.1021/acssensors.1c00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficient capture and sensitive detection of circulating tumor cells (CTCs) play a vital role in cancer diagnosis and prognosis. However, CTCs in the peripheral blood are very rare and heterogeneous, which make them difficult to isolate and detect. Herein, a novel colorimetric nanobioplatform was successfully developed for the highly efficient capture and highly sensitive detection of heterogeneous CTCs, which consisted of two parts: the multivalent aptamer-modified gold nanoparticles as the capture unit and two kinds of aptamer-functionalized pH-sensitive allochroic dyes (thymolphthalein and curcumin) @ molybdenum disulfide nanoflakes (MoS2 NFs) acting as the visual simultaneous detection of heterogeneous CTCs. Using MCF-7 and HeLa cells as the CTC models, the capture unit can effectively isolate the CTCs due to the multivalent probe with improved affinity. The two allochroic dyes can display obvious color changes under alkaline conditions (pH 12.5) in the presence of MCF-7 and HeLa cells, which provided a rapid and sensitive strategy for visualizing simultaneous detection of heterogeneous CTCs as low as 5 cells mL-1. This nanoplatform possessed a high sensitivity toward CTC detection owing to high dye loading capacity of MoS2 NFs and allochroic dyes with excellent pH sensitivity. It can successfully distinguish and quantitatively detect the targeted heterogeneous CTCs from numerous interfering cells in diluted whole blood. It can also be used to detect CTCs from lysed blood samples from cancer patients, indicating promising application for cancer diagnosis.
Collapse
Affiliation(s)
- Xiuli Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xinjun Wang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liran Wei
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Qianqian Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Mingqiang Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiao Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
29
|
Zahra QUA, Khan QA, Luo Z. Advances in Optical Aptasensors for Early Detection and Diagnosis of Various Cancer Types. Front Oncol 2021; 11:632165. [PMID: 33718215 PMCID: PMC7946820 DOI: 10.3389/fonc.2021.632165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is a life-threatening concern worldwide. Sensitive and early-stage diagnostics of different cancer types can make it possible for patients to get through the best available treatment options to combat this menace. Among several new detection methods, aptamer-based biosensors (aptasensors) have recently shown promising results in terms of sensitivity, identification, or detection of either cancerous cells or the associated biomarkers. In this mini-review, we have summarized the most recent (2016-2020) developments in different approaches belonging to optical aptasensor technologies being widely employed for their simple operation, sensitivity, and early cancer diagnostics. Finally, we shed some light on limitations, advantages, and current challenges of aptasensors in clinical diagnostics, and we elaborated on some future perspectives.
Collapse
Affiliation(s)
- Qurat ul ain Zahra
- Core Facility Center for Life Sciences, Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sciences and Technology of China, Hefei, China
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Qaiser Ali Khan
- Institute of Chemistry of New Materials, Universität Osnabrück, Osnabrück, Germany
| | - Zhaofeng Luo
- Core Facility Center for Life Sciences, Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sciences and Technology of China, Hefei, China
| |
Collapse
|
30
|
Wang X, Lin ZZ, Hong CY, Huang ZY. Colorimetric detection of hypoxanthine in aquatic products based on the enzyme mimic of cobalt-doped carbon nitride. NEW J CHEM 2021. [DOI: 10.1039/d1nj03467g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A colorimetric method for the rapid detection of Hx in aquatic products was established based on the peroxidase-like activity of cobalt-doped graphite phase carbon nitride (Co-doped-g-C3N4).
Collapse
Affiliation(s)
- Xin Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zheng-Zhong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Cheng-Yi Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zhi-Yong Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|