1
|
Yang L, Yang S, Zhang T, Zhao L, Fa H, Wang Y, Huo D, Hou C, Yang M. Point-of-care testing of methotrexate using a controlled release sensor based on a personal glucose meter. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1345-1353. [PMID: 39835381 DOI: 10.1039/d4ay02038c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Methotrexate (MTX), a widely administered medication for treating an array of tumors and autoimmune disorders, necessitates stringent monitoring due to the potential for severe adverse effects associated with its high dosage. Nevertheless, the existing methods for monitoring MTX are often intricate, time-consuming and incur significant costs. In this work, we constructed a controlled release sensor, harnessing the versatility of a personal glucose meter (PGM), which had been devised for the swift detection of MTX. This innovative approach employed HP-UiO-66-NH2 as a nanoscale reservoir for glucose encapsulation, with aptamer-conjugated gold nanoparticles (AuNPs@Apt) serving as molecular gates, sealing the pores of the nano-container. Upon the introduction of MTX into the solution, a specific recognition event occurred between the aptamer and MTX, leading to the formation of a stable AuNPs@Apt-MTX complex. This interaction triggered the release of AuNPs@Apt from the surface of HP-UiO-66-NH2, allowing glucose to escape, which was then detected by the PGM. This method demonstrated a robust linear response to MTX concentrations spanning from 0.1 μM to 20 μM, with a remarkable detection limit of 0.1 μM. Extensive experiments underscored the platform's exceptional selectivity for MTX detection, coupled with excellent reproducibility and stability, with a detection time of only 30 minutes. Importantly, it had been successfully applied to the analysis of MTX in diluted human serum with satisfactory recoveries. Given its portability and cost-effectiveness, this platform paved a novel avenue for monitoring MTX blood drug levels, offering significant potential for clinical applications and drug monitoring strategies.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Ting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Langyi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
2
|
Yang DN, Geng S, Jing R, Zhang H. Recent Developments in Personal Glucose Meters as Point-of-Care Testing Devices (2020-2024). BIOSENSORS 2024; 14:419. [PMID: 39329794 PMCID: PMC11430212 DOI: 10.3390/bios14090419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Point-of-care testing (POCT) is a contemporary diagnostic approach characterized by its user-friendly nature, cost efficiency, environmental compatibility, and lack of reliance on professional experts. Therefore, it is widely used in clinical diagnosis and other analytical testing fields to meet the demand for rapid and convenient testing. The application of POCT technology not only improves testing efficiency, but also brings convenience and benefits to the healthcare industry. The personal glucose meter (PGM) is a highly successful commercial POCT tool that has been widely used not only for glucose analysis, but also for non-glucose target detection. In this review, the recent advances from 2020 to 2024 in non-glucose target analysis for PGMs as POCT devices are summarized. The signal transduction strategies for non-glucose target analysis based on PGMs, including enzymatic transduction, nanocarrier transduction (enzyme or glucose), and glucose consumption transduction are briefly introduced. Meanwhile, the applications of PGMs in non-glucose target analysis are outlined, encompassing biomedical, environmental, and food analysis, along with other diverse applications. Finally, the prospects of and obstacles to employing PGMs as POCT tools for non-glucose target analysis are discussed.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| | - Shan Geng
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Rong Jing
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| |
Collapse
|
3
|
Wang S, Huang H, Wang X, Zhou Z, Luo Y, Huang K, Cheng N. Recent Advances in Personal Glucose Meter-Based Biosensors for Food Safety Hazard Detection. Foods 2023; 12:3947. [PMID: 37959066 PMCID: PMC10649190 DOI: 10.3390/foods12213947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Food safety has emerged as a significant concern for global public health and sustainable development. The development of analytical tools capable of rapidly, conveniently, and sensitively detecting food safety hazards is imperative. Over the past few decades, personal glucose meters (PGMs), characterized by their rapid response, low cost, and high degree of commercialization, have served as portable signal output devices extensively utilized in the construction of biosensors. This paper provides a comprehensive overview of the mechanism underlying the construction of PGM-based biosensors, which consists of three fundamental components: recognition, signal transduction, and signal output. It also detailedly enumerates available recognition and signal transduction elements, and their modes of integration. Then, a multitude of instances is examined to present the latest advancements in the application of PGMs in food safety detection, including targets such as pathogenic bacteria, mycotoxins, agricultural and veterinary drug residues, heavy metal ions, and illegal additives. Finally, the challenges and prospects of PGM-based biosensors are highlighted, aiming to offer valuable references for the iterative refinement of detection techniques and provide a comprehensive framework and inspiration for further investigations.
Collapse
Affiliation(s)
- Su Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Huixian Huang
- College of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou 545000, China;
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Ziqi Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| |
Collapse
|
4
|
He F, Wang H, Du P, Li T, Wang W, Tan T, Liu Y, Ma Y, Wang Y, El-Aty A. Personal Glucose Meters Coupled with Signal Amplification Technologies for Quantitative Detection of Non-Glucose Targets: Recent Progress and Challenges in Food Safety Hazards Analysis. J Pharm Anal 2023; 13:223-238. [PMID: 37102109 PMCID: PMC10123950 DOI: 10.1016/j.jpha.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Ensuring food safety is paramount worldwide. Developing effective detection methods to ensure food safety can be challenging owing to trace hazards, long detection time, and resource-poor sites, in addition to the matrix effects of food. Personal glucose meter (PGM), a classic point-of-care testing device, possesses unique application advantages, demonstrating promise in food safety. Currently, many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards. Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors, which is crucial for solving the challenges associated with the use of PGMs for food safety analysis. This review introduces the basic detection principle of a PGM-based sensing strategy, which consists of three key factors: target recognition, signal transduction, and signal output. Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies (nanomaterial-loaded multienzyme labeling, nucleic acid reaction, DNAzyme catalysis, responsive nanomaterial encapsulation, and others) in the field of food safety detection are reviewed. Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed. Despite the need for complex sample preparation and the lack of standardization in the field, using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
Collapse
|
5
|
Tian T, Zhang WY, Zhou HY, Peng LJ, Zhou X, Zhang H, Yang FQ. A Catechol-Meter Based on Conventional Personal Glucose Meter for Portable Detection of Tyrosinase and Sodium Benzoate. BIOSENSORS 2022; 12:1084. [PMID: 36551051 PMCID: PMC9776396 DOI: 10.3390/bios12121084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 05/28/2023]
Abstract
In this study, the personal glucose meter (PGM) was first used as a fast and user-friendly meter for analyzing catechol (CA) based on the reduction of the mediator K3[Fe(CN)6] to K4[Fe(CN)6] in the glucose test strip. Then, an easy, low-cost, and convenient PGM-based method for detecting tyrosinase (TYR) activity and sodium benzoate (SBA) was developed on the basis of the TYR-catalyzed reaction. In this method, CA is oxidized to form o-benzoquinone by TYR, thereby reducing the residual amount of CA and the PGM readout. On the other hand, SBA can inhibit the oxidation of CA catalyzed by TYR and increase the residual amount of CA after the enzymatic reaction. Therefore, the activity of TYR is proportional to the difference in the PGM readout of CA, and the concentration of SBA is positively correlated with the residual amount of CA. After the relevant experimental conditions were systematically optimized, the proposed PGM-based method for the detection of TYR and SBA was successfully validated. The liner ranges are 1.0-103.3 U/mL and 6.25-1000 ppm, and the quantification limits are 1.0 U/mL and 6.25 ppm for TYR and SBA, respectively. Moreover, the spiked recovery tests in normal human serum and carbonate beverages (i.e., Cola, Sprite, and Fanta) were performed, and the recoveries (91.6-106.8%) further confirm the applicability of the PGM-based method in real sample analysis.
Collapse
Affiliation(s)
- Tao Tian
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (W.-Y.Z.); (H.-Y.Z.); (L.-J.P.); (X.Z.); (F.-Q.Y.)
| | - Wei-Yi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (W.-Y.Z.); (H.-Y.Z.); (L.-J.P.); (X.Z.); (F.-Q.Y.)
| | - Hang-Yu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (W.-Y.Z.); (H.-Y.Z.); (L.-J.P.); (X.Z.); (F.-Q.Y.)
| | - Li-Jing Peng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (W.-Y.Z.); (H.-Y.Z.); (L.-J.P.); (X.Z.); (F.-Q.Y.)
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (W.-Y.Z.); (H.-Y.Z.); (L.-J.P.); (X.Z.); (F.-Q.Y.)
| | - Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (W.-Y.Z.); (H.-Y.Z.); (L.-J.P.); (X.Z.); (F.-Q.Y.)
| |
Collapse
|
6
|
Wang Q, Zhang Z, Zhang L, Liu Y, Xie L, Ge S, Yu J. Photoswitchable CRISPR/Cas12a-Amplified and Co 3O 4@Au Nanoemitter Based Triple-Amplified Diagnostic Electrochemiluminescence Biosensor for Detection of miRNA-141. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32960-32969. [PMID: 35839124 DOI: 10.1021/acsami.2c08823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a CRISPR/Cas12a initiated switchable ternary electrochemiluminescence (ECL) biosensor combined with a Co3O4@Au nanoemitter is presented for the in vitro monitoring of miRNA-141. Benefiting from the advantages of high-throughput cargo payload capability and superconductivity, three-dimensional reduced graphene oxide (3D-rGO) was designated as an introductory conducting stratum of a paper working electrode (PWE). With the collaborative participation of Co3O4@Au NPs, the transmutation of TPrA in the Ru(bpy)32+/TPrA system can be riotously expedited into exorbitant free radical ions TPrA•, which provoked the exaggeration of the ECL signal. Moreover, the programmable enzyme-free hybrid chain reaction (HCR) amplifier on the PWE surface accurately anchored the assembly of nucleic acid tandem and accomplished the secondary recursion of the signal. Impressively, the multifunctional CRISPR/Cas12a with nonspecific cis/trans-splitting decomposition manipulated the photoswitch of the "on-off" signal state that avoided the false-positive diagnosis. The presented multistrategy cooperative biosensor demonstrated extraordinary sensitivity and specificity, with a low detection limit of 3.3 fM (S/N = 3) in the concentration scope from 10 fM to 100 nM, which fully corresponded to the expectation. Overall, this innovative methodology paved a generous avenue for evaluating multifarious biotransformations and provided a tremendous impetus to the development of real-time diagnosis and clinical detection of other biomarkers.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Li Xie
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
7
|
Low background interference SERS aptasensor for highly sensitive multiplex mycotoxin detection based on polystyrene microspheres-mediated controlled release of Raman reporters. Anal Chim Acta 2022; 1218:340000. [DOI: 10.1016/j.aca.2022.340000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
|
8
|
Chen J, Li S, Chen Y, Yang J, Dong J, Lu X. l-Cysteine-Terminated Triangular Silver Nanoplates/MXene Nanosheets are Used as Electrochemical Biosensors for Efficiently Detecting 5-Hydroxytryptamine. Anal Chem 2021; 93:16655-16663. [PMID: 34846857 DOI: 10.1021/acs.analchem.1c04218] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5-Hydroxytryptamine (5-HT) is an important neurotransmitter, and its content in the human body is of great significance to human health. In this study, an l-cysteine-terminated triangular silver nanoplate loaded on a MXene (two-dimensional transition metal carbide or nitride) (Tri-AgNP/l-Cys/MXene) electrochemical sensor was used to detect 5-HT. As an electrically active amino acid with a sulfhydryl group, l-cysteine (l-Cys) forms a more stable Ag-S bond with silver nanoparticles, which can selectively substitute trisodium citrate (TSC) in TSC-capped triangular silver nanoplates (Tri-Ag-NP/TSC). Due to the good conductivity, biocompatibility, and large surface area, MXenes provide a good platform for loading Tri-AgNP/l-Cys. Under optimized conditions, the concentration range for detecting 5-HT with the sensor is 0.5-150 μM, and the limit of detection (LOD) is 0.08 μM (S/N = 3). For detecting 5-HT in actual serum samples, the sensor also showed a good recovery rate (95.38-102.3%), and the relative standard deviation was 2.2-3.4%.
Collapse
Affiliation(s)
- Jing Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shuying Li
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiao Yang
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jianbin Dong
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoquan Lu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
9
|
Li C, Feng X, Yang S, Xu H, Yin X, Yu Y. Capture, Detection, and Simultaneous Identification of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52406-52416. [PMID: 34709779 DOI: 10.1021/acsami.1c15838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circulating tumor cells (CTCs) play a key role in the development of tumor metastasis. It will be a big step forward for CTC application as a reliable clinical liquid biopsy marker to be able to identify the captured CTCs while achieving a high capture efficiency within one analytical system. Herein, in this work, a stimuli-responsive and rhodamine 6G (Rho 6G)-entrapped fluorescent metal-organic framework (MOF) probe, named MOF-Rho 6G-DNA, was designed to capture, detect, and subsequently identify CTCs from blood samples of cancer patients. The probe was fabricated by modifying the epithelial cell adhesion molecule (EpCAM) hairpin DNA aptamer with Rho 6G enclosed and an Arm-DNA-attached UiO-66-NH2 MOF by sequence complementation. CTCs could be captured by the EpCAM hairpin DNA on the probe; as a result, Rho 6G loaded in the probe was released, and the number of CTCs was positively related to the concentration of released Rho 6G. An excellent correlation of fluorescence intensities with CTC numbers was obtained from 2 to 500 cells/mL. More importantly, the MOF-Rho 6G-DNA probe simultaneously realized rapid identification of the captured cells within 30 min by only relying on the residue Rho 6G in the MOF cavity. The captured target cells can be conveniently released from the probe using the complementary DNA sequence. These performance features of the probe were further verified by blood samples from patients of various types of tumor.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xingqing Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Shenhao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|