1
|
Papi MP, Kalinke C, Soccol CR, Soccol VT, Beirão BCB, Bergamini MF, Marcolino-Júnior LH. Electrochemical Paper-Based Analytical Device (e-PAD) Using Immobilized Prussian Blue and Antibodies for the Diagnosis of Leishmania. ACS OMEGA 2025; 10:6593-6600. [PMID: 40028062 PMCID: PMC11866208 DOI: 10.1021/acsomega.4c07455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Leishmaniasis is a neglected disease prevalent in remote and economically disadvantaged regions. Its diagnosis can be achieved through various methods, with electroanalysis emerging as an excellent alternative for antigen detection due to its simplicity, sensitivity, and cost-effectiveness. Herein, a qualitative electrochemical paper-based analytical device (e-PAD) using unmodified screen-printed electrodes for the immunoassay of Leishmania amazonensis antigens has been developed. The detection is based on a sandwich-type assembly, utilizing two biological elements, one for capture and one for detection, with the target antigen sandwiched between them. Antibodies against Leishmania amazonensis and Prussian blue, serving as a redox mediator, were immobilized on the paper substrate. A synthetic peptide was employed as the target to demonstrate the proof-of-concept performance of the device. The formation of the immunocomplex was confirmed using horseradish peroxidase (HRP)-labeled antibodies, enabling the detection of antigen/antibody complexes in the presence of hydrogen peroxide via multiple pulse amperometry (MPA). The immunoassay exhibited good reproducibility (RSD = 5.12%) and selectivity when tested with positive and negative samples. Additionally, the ease of use and low cost of e-PAD enhance its accessibility, making it a valuable tool for the rapid and reliable diagnosis of neglected diseases. This reinforces its relevance as a practical solution in public health, particularly in underserved regions.
Collapse
Affiliation(s)
- Maurício
Alberto Poletti Papi
- Laboratory
of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Cristiane Kalinke
- Laboratory
of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Carlos R. Soccol
- Department
of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Vanete Thomaz Soccol
- Department
of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Breno C. B. Beirão
- Graduate
Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), CEP, Curitiba, Paraná 81531-980, Brazil
| | - Márcio F. Bergamini
- Laboratory
of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Luiz H. Marcolino-Júnior
- Laboratory
of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| |
Collapse
|
2
|
Kim TH, Park JY, Jung J, Sung JS, Kwon S, Bae HE, Shin HJ, Kang MJ, Jose J, Pyun JC. A one-step immunoassay based on switching peptides for diagnosis of porcine epidemic diarrhea virus (PEDV) using screened Fv-antibodies. J Mater Chem B 2024; 12:3751-3763. [PMID: 38532694 DOI: 10.1039/d4tb00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this study, a one-step immunoassay for porcine epidemic diarrhea virus (PEDV) based on Fv-antibodies and switching peptides was developed, and the assay results of PEDV were obtained by just mixing samples without any further reaction or washing steps. The Fv-antibodies with binding affinity to the spike protein of PEDV were screened from the Fv-antibody library using the receptor-binding domain (RBD) of the spike protein as a screening probe. Screened Fv-antibodies with binding affinities to the RBD antigen were expressed, and the binding constants (KD) were calculated to be 83-142 nM. The one-step immunoassay for the detection of PEDV was configured as a displacement immunoassay using a fluorescence-labeled switching peptide. The one-step immunoassay based on switching peptides was performed using PEDV, and the limit of detection (LOD) values for PEDV detection were estimated to be Ct = 39.7-36.4. Compared with the LOD value for a conventional lateral flow immunoassay (Ct = 33.0), the one-step immunoassay showed a remarkably improved LOD for the detection of PEDV. Finally, the interaction between the screened Fv-antibodies and the PEDV RBD was investigated using docking simulations and compared with the amino acid sequences of the receptors on host cells, such as aminopeptidase N (APN) and angiotensin-converting enzyme-2 (ACE-2).
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| |
Collapse
|
3
|
Jung J, Sung JS, Bong JH, Kim TH, Kwon S, Bae HE, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. One-step immunoassay of SARS-CoV-2 using screened Fv-antibodies and switching peptides. Biosens Bioelectron 2024; 245:115834. [PMID: 37995624 DOI: 10.1016/j.bios.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
The Fv-antibodies were correponded to VH region of immunoglobulin G, which were composed of three complementarity determining regions (CDRs) for the specific binding of antigens. In this work, the Fv-antibodies against SARS-CoV-2 spike protein (SP) were screened from an autodisplayed Fv-antibody library which was expressed on E. coli outer membrane, and the receptor binding domain (RBD) of SP was used as a screening probe. The screened target clones were analyzed to have quantitative binding properties to the RBD, and the Fv-antibodies from the screened target clones were expressed as soluble proteins. The binding affinity (KD) of expressed Fv-antibodies to the RBD was estimated to be 70-85 nM using SPR biosensor. The specific binding properties of Fv-antibodies were analyzed for pseudo-virus particles with SARS-CoV-2 SP on the Lenti-virus envelope, such as wild type (Wuhan-1) and variants (Delta, Omicron BA.2, Omicron BA.4/5) using a SPR biosensor. The detection of real SARS-CoV-2 (Wild type, Wuhan-1) based on a SPR biosensor was also presented using the Fv-antibodies with the binding constant (KD) of cycle threshold value (Ct) = 33.8-32.9 (2.19-4.08 copies/μL) and LOD of 0.67-0.83 copies/μL (Ct = 35.5-35.2). Finally, one-step immunoassay based on switching peptide was demonstrated for the detection of the real SARS-CoV-2 (Wuhan-1) without any washing step. The binding constant (KD) was estimated to be Ct = 35.2-33.9 (0.83-2.04 copies/μL), and LOD was estimated to be 0.14-0.47 copies/μL (Ct = 37.8-36.0). Considering the LOD of the conventional RT-PCR (Ct = 35), the LOD of the one-step immunoassay based on the switching peptide was determined to be feasible for the medical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, 02456, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westphalian Wilhelms-University Münster, Münster 48149, Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
4
|
Kim TH, Bong JH, Kim HR, Shim WB, Kang MJ, Pyun JC. One-step immunoassay based on switching peptides for analyzing ochratoxin A in wines. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA one-step immunoassay is presented for the detection of ochratoxin A (OTA) using an antibody complex with switching peptides. Because the switching peptides (fluorescence-labeled) were able to bind the frame region of antibodies (IgGs), they were dissociated from antibodies immediately when target analytes were bound to the binding pockets of antibodies. From the fluorescence signal measurements of switching peptides, a quantitative analysis of target analytes, via a one-step immunoassay without any washing steps, could be performed. As the first step, the binding constant (KD) of OTA to the antibodies was estimated under the continuous flow conditions of a surface plasmon resonance biosensor. Then, the optimal switching peptide, among four types of switching peptides, and the reaction condition for complex formation with the switching peptide were determined for the one-step immunoassay for OTA analysis. Additionally, the selectivity test of one-step immunoassay for OTA was carried out in comparison with phenylalanine and zearalenone. For the application to the one-step immunoassay to detect OTA in wines, two types of sample pre-treatment methods were compared: (1) a liquid extraction was carried out using chloroform as a solvent with subsequent resuspension in phosphate-buffered saline (total analysis time < 1 h); (2) direct dilution of the wine sample (total analysis time < 0.5 h). Finally, the direct dilution method was found to be effective for the one-step immunoassay based on the switching peptide assay for OTA in wines with a markedly improved total analysis time (< 0.5 h). Additionally, the assay results were compared with commercial lateral flow immunoassay.
Collapse
|
5
|
Braz BA, Hospinal-Santiani M, Martins G, Pinto CS, Zarbin AJG, Beirão BCB, Thomaz-Soccol V, Bergamini MF, Marcolino-Junior LH, Soccol CR. Graphene-Binding Peptide in Fusion with SARS-CoV-2 Antigen for Electrochemical Immunosensor Construction. BIOSENSORS 2022; 12:bios12100885. [PMID: 36291021 PMCID: PMC9599560 DOI: 10.3390/bios12100885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/02/2023]
Abstract
The development of immunosensors to detect antibodies or antigens has stood out in the face of traditional methods for diagnosing emerging diseases such as the one caused by the SARS-CoV-2 virus. The present study reports the construction of a simplified electrochemical immunosensor using a graphene-binding peptide applied as a recognition site to detect SARS-CoV-2 antibodies. A screen-printed electrode was used for sensor preparation by adding a solution of peptide and reduced graphene oxide (rGO). The peptide-rGO suspension was characterized by scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The electrochemical characterization (electrochemical impedance spectroscopy-EIS, cyclic voltammetry-CV and differential pulse voltammetry-DPV) was performed on the modified electrode. The immunosensor response is based on the decrease in the faradaic signal of an electrochemical probe resulting from immunocomplex formation. Using the best set of experimental conditions, the analytic curve obtained showed a good linear regression (r2 = 0.913) and a limit of detection (LOD) of 0.77 μg mL-1 for antibody detection. The CV and EIS results proved the efficiency of device assembly. The high selectivity of the platform, which can be attributed to the peptide, was demonstrated by the decrease in the current percentage for samples with antibody against the SARS-CoV-2 S protein and the increase in the other antibodies tested. Additionally, the DPV measurements showed a clearly distinguishable response in assays against human serum samples, with sera with a response above 95% being considered negative, whereas responses below this value were considered positive. The diagnostic platform developed with specific peptides is promising and has the potential for application in the diagnosis of other infections that lead to high antibody titers.
Collapse
Affiliation(s)
- Beatriz A. Braz
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Manuel Hospinal-Santiani
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Gustavo Martins
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Cristian S. Pinto
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Aldo J. G. Zarbin
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Breno C. B. Beirão
- Graduate Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Vanete Thomaz-Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Márcio F. Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Luiz H. Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Carlos R. Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| |
Collapse
|
6
|
Kim HR, Bong JH, Kim TH, Shin SS, Kang MJ, Shim WB, Lee DY, Son DH, Pyun JC. One-Step Homogeneous Immunoassay for the Detection of Influenza Virus Using Switching Peptide and Graphene Quencher. BIOCHIP JOURNAL 2022; 16:334-341. [PMID: 35909466 PMCID: PMC9326414 DOI: 10.1007/s13206-022-00076-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
One-step homogeneous immunoassay was developed for detecting influenza viruses A and B (Inf-A and Inf-B) using the switching peptide H2. As the fluorescence-labeled switching peptide dissociated from the binding pocket of detection antibodies, the fluorescence signal could be directly generated by the binding of Inf-A and Inf-B without washing (i.e., one-step immunoassay). For the one-step homogeneous immunoassay with detection antibodies in solution, graphene was labeled with the antibodies as a fluorescence quencher. To test the feasibility of the homogeneous one-step immunoassay, the stability of the antibody complex with the switching peptide was evaluated under different pH and salt conditions. The one-step homogeneous immunoassay with switching peptide was conducted using influenza virus antigens in phosphate-buffered saline and real samples with inactivated Inf-A and Inf-B spiked in serum. Finally, the one-step homogeneous immunoassay results were compared with those of commercially available lateral flow immunoassays.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Seung-Shick Shin
- OPTOLANE Technologies Inc, 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494 Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Won-Bo Shim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju, Korea
| | - Do Young Lee
- OPTOLANE Technologies Inc, 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494 Republic of Korea
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul, 03722 Korea
| |
Collapse
|
7
|
Kim HR, Bong JH, Kim TH, Choi KH, Shin SS, Kang MJ, Shim WB, Lee DY, Pyun JC. Homogeneous One-Step Immunoassay Based on Switching Peptides for Detection of the Influenza Virus. Anal Chem 2022; 94:9627-9635. [PMID: 35762898 DOI: 10.1021/acs.analchem.2c00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, a homogeneous one-step immunoassay based on switching peptides is presented for the detection of influenza viruses A and B (Inf-A and Inf-B, respectively). The one-step immunoassay represents an immunoassay method that does not involve any washing steps, only treatment of the sample. In this method, fluorescence-labeled switching peptides quantitatively dissociate from the antigen-binding site of immunoglobulin G (IgG). In particular, the one-step immunoassay based on soluble detection antibodies with switching peptides is called a homogeneous one-step immunoassay. The immunoassay developed uses switching peptides labeled with two types of fluorescence dyes (FAM and TAMRA) and detection antibodies labeled with two types of fluorescence quenchers (TQ2 for FAM and TQ3 for TAMRA). The optimal switching peptides for the detection of Inf-A and Inf-B have been selected as L1-peptide and H2-peptide. The interactions between the four kinds of switching peptides and IgG have been analyzed using computational docking simulation and SPR biosensor. The location of labeling for the fluorescence quenchers has been determined based on the distance between the fluorescence dyes of the switching peptides and the fluorescence quenchers, calculated on the basis of the efficiency of fluorescence quenching, using the Förster equation. To demonstrate the feasibility of the one-step immunoassay, binding constants (KD) have been calculated for detection antibodies against Inf-A and Inf-B with target antigens (Inf-A and Inf-B) and switching peptides (L1- and H2-peptides), using an isotherm model. The immunoassay has been demonstrated to be feasible using antigens as well as real samples of Inf-A and Inf-B with a critical cycle number (Ct). The immunoassay has also been compared to other commercially available rapid test kits for Inf-A and Inf-B and found to be far more sensitive for detection of Inf-A and Inf-B over the entire detection range.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung-Hak Choi
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Seung-Shick Shin
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Won-Bo Shim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Do Young Lee
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Park JH, Song Z, Bong JH, Kim HR, Kim MJ, Choi KH, Shin SS, Kang MJ, Lee DY, Pyun JC. Electrochemical One-Step Immunoassay Based on Switching Peptides and Pyrolyzed Carbon Electrodes. ACS Sens 2022; 7:215-224. [PMID: 34984905 DOI: 10.1021/acssensors.1c01998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Switching peptides were designed to bind reversibly to the binding pocket of antibodies (IgG) by interacting with frame regions (FRs). These peptides can be quantitatively released when antigens bind to IgG. As FRs have conserved amino acid sequences, switching peptides can be used as antibodies for different antigens and different source animals. In this study, an electrochemical one-step immunoassay was conducted using switching peptides labeled with ferrocene for the quantitative measurement of analytes. For the effective amperometry of the switching peptides labeled with ferrocene, a pyrolyzed carbon electrode was prepared by pyrolysis of the parylene-C film. The feasibility of the pyrolyzed carbon electrode for the electrochemical one-step immunoassay was determined by analyzing its electrochemical properties, such as its low double-layer capacitance (Cdl), high electron transfer rate (kapp), and wide electrochemical window. In addition, the factors influencing the amperometry of switching peptides labeled with ferrocene were analyzed according to the hydrodynamic radius, the number of intrahydrogen bonds, dipole moments, and diffusion coefficients. Finally, the applicability of the electrochemical one-step immunoassay for the medical diagnosis of the human hepatitis B surface antigen (hHBsAg) was assessed.
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moon-Ju Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung-Hak Choi
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Seung-Shick Shin
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Do Young Lee
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Sung JS, Bong JH, Lee SJ, Jung J, Kang MJ, Lee M, Shim WB, Jose J, Pyun JC. One-step immunoassay for food allergens based on screened mimotopes from autodisplayed F V-antibody library. Biosens Bioelectron 2022; 202:113976. [PMID: 35042130 DOI: 10.1016/j.bios.2022.113976] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
One-step immunoassay detects a target analyte simply by mixing a sample with a reagent solution without any washing steps. Herein, we present a one-step immunoassay that uses a peptide mimicking a target analyte (mimotope). The key idea of this strategy is that the mimotopes are screened from an autodisplayed FV-antibody library using monoclonal antibodies against target analytes. The monoclonal antibodies are bound to fluorescence-labeled mimotopes, which are quantitatively released into the solution when the target analytes are bound to the monoclonal antibodies. Thus, the target analyte is detected without any washing steps. For the mimotope screening, an FV-antibody library was exhibited on the outer membrane of E. coli with a diversity of >106 clones/library using autodisplay technology. The targeted clones were screened from the autodisplayed FV-antibody library using magnetic beads with immobilized monoclonal antibodies against food allergens. The analysis of binding properties of a control strain with mutant FV -antibodies composed of only CDR1 and CDR2 demonstrated that the CDR3 regions of the screened FV-antibodies showed binding affinity to food allergens. The CDR3 regions were synthesized into peptides as mimotopes for the corresponding food allergens (mackerel, peanuts, and pig fat). One-step immunoassays for food allergens were demonstrated using mimotopes against mackerel, peanut, and pig fat without any washing steps in solution without immobilization of antibodies to a solid support.
Collapse
Affiliation(s)
- Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Soo Jeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won-Bo Shim
- Department of Food Science and Technology & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
10
|
Song Z, Park JH, Kim HR, Lee GY, Kang MJ, Kim MH, Pyun JC. Carbon electrode obtained via pyrolysis of plasma-deposited parylene-C for electrochemical immunoassays. Analyst 2022; 147:3783-3794. [DOI: 10.1039/d2an00854h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, parylene-C films from plasma deposition as well as thermal deposition were pyrolyzed to prepare a carbon electrode for application in electrochemical immunoassays.
Collapse
Affiliation(s)
- Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
- Electronic Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, 52851, Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Korea
| | | | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Korea
| |
Collapse
|