1
|
Liu Y, Cao L, Zhou J, Li C, Du J, Xue Y, Li X, Mao L. Single-Vesicle Electrochemistry in Fresh Brain Slices Enables In Situ Quantification of Vesicular Monoamine. J Am Chem Soc 2025; 147:149-160. [PMID: 39705330 DOI: 10.1021/jacs.4c06572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The quantitative analysis of vesicular neurotransmitters in neurons in situ is paramount for investigating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease (PD). Unfortunately, a direct approach for monitoring neurotransmitter chemistry in single vesicles in fresh brain tissue has remained inaccessible so far. Here, we introduce an innovative platform of single-vesicle electrochemistry (SVE) in fresh brain tissue, enabling the quantification of neurotransmitters at the single-vesicle level for both soma and varicosity. Utilizing this methodology, we investigated a PD animal model, which demonstrated a significant reduction in both vesicular dopamine (DA) storage and exocytotic release in DA neurons in the substantia nigra. Furthermore, SVE unveiled the heterogeneous nature of chemical neurotransmission among DA neurons across different brain regions. Importantly, this tissue-based SVE approach can be extended to quantify other monoamine neurotransmitters, such as norepinephrine and serotonin, at the single-vesicle level. The introduction of this methodology marks a significant advancement, offering a novel avenue to explore neurological and psychiatric disorders through the lens of neurotransmitter signaling in the mammalian brain. This breakthrough has the potential to deepen our understanding of the underlying mechanisms of these complex disorders and may pave the way for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yuying Liu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lijiao Cao
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junlan Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuqi Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jinchang Du
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xianchan Li
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Wu F, Yu P, Mao L. Multi-Spatiotemporal Probing of Neurochemical Events by Advanced Electrochemical Sensing Methods. Angew Chem Int Ed Engl 2023; 62:e202208872. [PMID: 36284258 DOI: 10.1002/anie.202208872] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Neurochemical events involving biosignals of different time and space dimensionalities constitute the complex basis of neurological functions and diseases. In view of this fact, electrochemical measurements enabling real-time quantification of neurochemicals at multiple levels of spatiotemporal resolution can provide informative clues to decode the molecular networks bridging vesicles and brains. This Minireview focuses on how scientific questions regarding the properties of single vesicles, neurotransmitter release kinetics, interstitial neurochemical dynamics, and multisignal interconnections in vivo have driven the design of electrochemical nano/microsensors, sensing interface engineering, and signal/data processing. An outlook for the future frontline in this realm will also be provided.
Collapse
Affiliation(s)
- Fei Wu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Hatamie A, He X, Zhang XW, Oomen PE, Ewing AG. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens Bioelectron 2022; 220:114899. [DOI: 10.1016/j.bios.2022.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
4
|
Xiang C, Chen P, Zhang Q, Li Y, Pan Y, Xie W, Sun J, Liu Z. Intestinal microbiota modulates adrenomedullary response through Nod1 sensing in chromaffin cells. iScience 2021; 24:102849. [PMID: 34381974 PMCID: PMC8333343 DOI: 10.1016/j.isci.2021.102849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
The intestinal microbiota closely interacts with the neuroendocrine system and exerts profound effects on host physiology. Here, we report that nucleotide-binding oligomerization domain 1 (Nod1) ligand derived from intestinal bacteria modulates catecholamine storage and secretion in mouse adrenal chromaffin cells. The cytosolic peptidoglycan receptor Nod1 is involved in chromogranin A (Chga) retention in dense core granules (DCGs) in chromaffin cells. Mechanistically, upon recognizing its ligand, Nod1 localizes to DCGs, and recruits Rab2a, which is critical for Chga and epinephrine retention in DCGs. Depletion of Nod1 ligand or deficiency of Nod1 leads to a profound defect in epinephrine storage in chromaffin cells and subsequently less secretion upon stimulation. The intestine-adrenal medulla cross talk bridged by Nod1 ligand modulates adrenal medullary responses during the immobilization-induced stress response in mice. Thus, our study uncovers a mechanism by which intestinal microbes modulate epinephrine secretion in response to stress, which may provide further understanding of the gut-brain axis.
Collapse
Affiliation(s)
- Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchun Xie
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guang Dong Bio-healtech Advanced Co., Ltd., Foshan, 528000, P. R. China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|