1
|
Lee H, Im S, Lee C, Lee H, Chu SW, Ho AHP, Kim D. Probing Temperature-Induced Plasmonic Nonlinearity: Unveiling Opto-Thermal Effects on Light Absorption and Near-Field Enhancement. NANO LETTERS 2024; 24:3598-3605. [PMID: 38407029 DOI: 10.1021/acs.nanolett.3c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise measurement and control of local heating in plasmonic nanostructures are vital for diverse nanophotonic devices. Despite significant efforts, challenges in understanding temperature-induced plasmonic nonlinearity persist, particularly in light absorption and near-field enhancement due to the absence of suitable measurement techniques. This study presents an approach allowing simultaneous measurements of light absorption and near-field enhancement through angle-resolved near-field scanning optical microscopy with iterative opto-thermal analysis. We revealed gold thin films exhibit sublinear nonlinearity in near-field enhancement due to nonlinear opto-thermal effects, while light absorption shows both sublinear and superlinear behaviors at varying thicknesses. These observations align with predictions from a simple harmonic oscillation model, in which changes in damping parameters affect light absorption and field enhancement differently. The sensitivity of our method was experimentally examined by measuring the opto-thermal responses of three-dimensional nanostructure arrays. Our findings have direct implications for advancing plasmonic applications, including photocatalysis, photovoltaics, photothermal effects, and surface-enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Seongmin Im
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Hyunwoong Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| | - Shi-Wei Chu
- Department of Physics National, Taiwan University, Taipei, Taiwan 10617
- Brain Research Center National, Tsing Hua University, Hsinchu, Taiwan 30013
| | - Aaron Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea 03722
| |
Collapse
|
2
|
Zhang N, Tong M, Shi Z, Yang J, Chen B, Li C, Guo C. Screen printed electrodes on interfacial Pt-CuO/carbon nanofiber functional ink for real-time qualification of cell released hydrogen peroxide. Anal Chim Acta 2023; 1245:340829. [PMID: 36737132 DOI: 10.1016/j.aca.2023.340829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Screen printed electrode (SPE) on carbon-based inks exhibits promising applications in biosensing, environment protection and food safety. We report here a unique carbon-based material comprising Pt-CuO nanocrystal interfacially anchored on functionalized carbon nanofiber (Pt-CuO@FCNF) and its functional ink to build SPE for ultrasensitive detection of cell released H2O2. Pt-CuO@FCNF is fabricated using a one-pot and mass production method through direct pyrolysis of Pt and CuO precursors together with FCNF. FCNF with 1-D structure and high electrical conductivity can interfically anchor Pt-CuO nanocrystal, which synergically promotes rich active site and catalytic activity towards H2O2. Pt-CuO@FCNF exhibits a wide linear response of 0.4 μM-11 mM, a low detection limit of 17 nM, a fast response time of 1.0 s, and good selectivity. Eventually, Pt-CuO@FCNF SPE realizes real-time and ultrasensitive qualification of H2O2 released from both normal and cancer cells.
Collapse
Affiliation(s)
- Ning Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, PR China
| | - Mengqi Tong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhuanzhuan Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bo Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Institute of Clean Energy & Advanced Materials, Southwest University, Chongqing, 400715, China; Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, PR China.
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
3
|
Son T, Moon G, Lee C, Xi P, Kim D. Super-resolved three-dimensional near-field mapping by defocused imaging and tracking of fluorescent emitters. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4805-4819. [PMID: 39634753 PMCID: PMC11501887 DOI: 10.1515/nanoph-2022-0546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 12/07/2024]
Abstract
Near-field optics is essential in many nanotechnology applications, such as implementing sensitive biosensing and imaging systems with extreme precision. Understanding optical near-fields at the nanoscale has so attracted the considerable research interest, which use a variety of analytical approaches, most notably near-field scanning microscopy. Here, we show defocused point localization mapped accumulation (DePLOMA), which can overcome many weaknesses of conventional analytical methods. DePLOMA is based on imaging fluorescence emitters at an out-of-focal plane. The acquisition, collection, and accumulation of the position and fluorescence intensity of emitters moving above nanostructures can generate three-dimensional near-field maps of light distribution. The idea enables super-resolution liquid-phase measurements, as demonstrated by reconstruction of near-field created by nanoslits with a resolution determined by emitter size. We employed fluorescent emitters with a radius of 50 and 100 nm for confirmation. The axial resolution was found to be enhanced by more than 6 times above that of diffraction-limited confocal laser scanning microscopy when DePLOMA was used.
Collapse
Affiliation(s)
- Taehwang Son
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
4
|
Lee H, Yoo H, Moon G, Toh KA, Mochizuki K, Fujita K, Kim D. Super-resolved Raman microscopy using random structured light illumination: Concept and feasibility. J Chem Phys 2021; 155:144202. [PMID: 34654313 DOI: 10.1063/5.0064082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report the use of randomly structured light illumination for chemical imaging of molecular distribution based on Raman microscopy with improved image resolution. Random structured basis images generated from temporal and spectral characteristics of the measured Raman signatures were superposed to perform structured illumination microscopy (SIM) with the blind-SIM algorithm. For experimental validation, Raman signatures corresponding to Rhodamine 6G (R6G) in the waveband of 730-760 nm and Raman shift in the range of 1096-1634 cm-1 were extracted and reconstructed to build images of R6G. The results confirm improved image resolution using the concept and hints at super-resolution by almost twice better than the diffraction-limit.
Collapse
Affiliation(s)
- Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Hajun Yoo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Kar-Ann Toh
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan and Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka 565-0871, Japan
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|