1
|
Guo L, Li L, Luo L, You T. Amplified electrochemiluminescence of Ru(dcbpy) 32+ via coreactant active sites on nitrogen-doped graphene quantum dots. Talanta 2025; 286:127554. [PMID: 39805207 DOI: 10.1016/j.talanta.2025.127554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Searching for new alternative to tripropylamine (TPrA) with low toxicity and high chemical stability for the tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium (II) (Ru(dcbpy)32+) based coreactant electrochemiluminescence (ECL) system is essential for widespread analytical applications. Here, nitrogen-doped graphene quantum dots (NGQDs) have been discovered to significantly amplify the ECL emission and increase the ECL efficiency of Ru(dcbpy)32+ for the first time. However, the mechanism by which NGQDs act as coreactants is not well comprehended. Therefore, various optical and electrochemical technologies were employed to investigate the ECL mechanism. It is proposed that the amino and carboxyl groups on the surface of NGQDs play crucial roles as the coreactant active sites, catalyzing the oxidation of Ru(dcbpy)32+. Based on this foundation, an "on-off-on" ECL aptasensor for the quantification of acetamiprid was developed, exhibiting a broad linear range and a detection limit of 0.056 pM. Satisfactory recoveries, ranging from 98.0 % to 101.6 %, were achieved in pakchoi samples. Consequently, NGQDs could serve as coreactants for Ru(dcbpy)32+, offering new opportunities for constructing a variety of sensors with extensive analytical applications in the ECL field.
Collapse
Affiliation(s)
- Lingyue Guo
- School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lijun Luo
- School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China.
| | - Tianyan You
- School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China.
| |
Collapse
|
2
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Kuang K, Li Y, Chen Y, Ji Y, Jia N. A simplified molecularly imprinted ECL sensor based on Mn 2SnO 4 nanocubes for sensitive detection of ribavirin. Analyst 2024; 149:1318-1326. [PMID: 38251970 DOI: 10.1039/d3an02077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Conventional single-signal or emerging sandwich-type double-signal electrochemiluminescence (ECL) immunosensors/aptasensors have offered accurate detection of small molecules, yet suffer from complicated setup, long processing time, and non-reusability. Here, we demonstrate a simplified molecularly imprinted ECL sensor based on Mn2SnO4 nanocubes. As an n-type semiconductor, Mn2SnO4 has numerous active sites that can capture electrons to accelerate chemical reactions, resulting in enhanced ECL activity and stability. For the first time, we verify a robust cathodic ECL emission of Mn2SnO4 luminophores in the presence of K2S2O8 coreactants. The proposed ECL sensor applies to the sensitive detection of ribavirin (RBV), endowing a wide linear range (1-2000 ng mL-1), low detection limit (0.85 ng mL-1, S/N = 3), high stability, specificity, and reproducibility, and the detection capability in real milk and chicken samples. This work highlights single semiconductor luminophore-driven molecularly imprinted ECL sensors, meeting the original aspiration of uncomplicated but high-performance sensing in food safety inspection.
Collapse
Affiliation(s)
- Kaida Kuang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Ya Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Yang Chen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Yu Ji
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Gao X, Zhang H, Liu L, Jia M, Li X, Li J. Nano-biosensor based on manganese dioxide nanosheets and carbon dots for dual-mode determination of Staphylococcus aureus. Food Chem 2024; 432:137144. [PMID: 37639893 DOI: 10.1016/j.foodchem.2023.137144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
A ratiometric fluorescence and colorimetry dual-mode nano-biosensor has been established for Staphylococcus aureus (S. aureus) determination. The prepared approaches of Manganese dioxide nanosheets (MnO2 NSs) and carbon dots (BCDs) were facile, efficient and labor-saving and MnO2 NSs-mediated fluorescence quenching and oxidation could amplify detection signals. The dual-mode determination had a broad linear range of 37 ∼ 3.7 × 106 CFU/mL and low detection limits of 9 CFU/mL (ratiometric fluorescence) and 22 CFU/mL (colorimetry). Meanwhile, the method was applied in real samples with recovery ranging of 90 ∼ 102% and RSD < 4.44%, which was an insignificant difference with standard plate counting. The new dual-mode approach of S. aureus possesses the advantages of superior sensitivity, precision, accuracy and specificity. Moreover, the dual-mode nano-biosensor can be adopted in other foodborne pathogens determination by changing corresponding aptamers and provide an enlightenment in monitoring food safety.
Collapse
Affiliation(s)
- Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Hongmei Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Lu Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Mu Jia
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
5
|
Luo L, Liu X, Bi X, Li L, You T. Dual-quenching effects of methylene blue on the luminophore and co-reactant: Application for electrochemiluminescent-electrochemical ratiometric zearalenone detection. Biosens Bioelectron 2023; 222:114991. [PMID: 36495721 DOI: 10.1016/j.bios.2022.114991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Methylene blue (MB) is a common multifunctional indicator, which can be applied as a quencher for electrochemiluminescence (ECL) analysis as well as a classical redox probe. Although it is relatively prevalent for MB to study the mechanism with Ru-based luminophores in ECL systems, there are few studies on the effects between MB and co-reactants. In this work, we proposed the first investigation of MB on the luminophore and co-reactant of the self-enhanced ECL composites (nitrogen-doped graphene quantum dots on Ru(bpy)32+-doped silica nanoparticles, NGQDs-Ru@SiO2), respectively. The relatively narrow ECL spectrum of luminophore (Ru@SiO2) and the suitable ultraviolet-visible absorption spectrum of MB led to the ECL resonance energy transfer between them, meanwhile the appropriate energy levels among them facilitated the electron transfer, resulting in a decreased ECL signal (quench mode I). Additionally, the co-reactant (NGQDs) was prone to π-π conjugation with MB due to its abundant π-electrons, which reduced the concentration of NGQDs' intermediates and triggered a weakened ECL signal (quench mode II). Therefore, the dual-quenching effects are ingeniously integrated and designed in one ECL-electrochemical (ECL-EC) ratiometric aptasensor for zearalenone detection, for demonstrating its efficacy in enhancing the sensitivity, which is 4.8-fold higher than Ru@SiO2 alone. This innovative ratiometric aptasensor achieved a relatively wide linear range from 1.0 × 10-15 to 5.0 × 10-8 g mL-1, and obtained a low detection limit of 8.5 × 10-16 g mL-1. Our proposed dual-quenching interactions between MB and NGQDs-Ru@SiO2 will open a new prospective for ECL-EC ratiometric aptasensor, which further broaden the application in sensitive and precise analysis of mycotoxins.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
6
|
N-heterocyclic Ir(III) complex targeting G-quadruplex structure to boost label-free and immobilization-free electrochemiluminescent sensing. Biosens Bioelectron 2023; 220:114839. [DOI: 10.1016/j.bios.2022.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
7
|
Huang Y, Pei X, Du S, Li Z, Gu X, Sun W, Niu X. Target-induced ratiometric electrochemical aptasensor for highly sensitive detection of thrombin based on AuNPs-MXene. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Dong H, Liu S, Liu Q, Li Y, Xu Z, Li Y, Wei Q. Mixed-Ligand-Regulated Self-Enhanced Luminous Eu-MOF as an ECL Signal Probe for an Oriented Antibody-Decorated Biosensing Platform. Anal Chem 2022; 94:12852-12859. [PMID: 36075077 DOI: 10.1021/acs.analchem.2c02852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The self-luminescence behavior of lanthanide MOFs (Ln-MOFs) due to the unique antenna effect is considered to be a promising electrochemiluminescence (ECL) emission for biosensors. It is more challenging for Ln-MOFs on account of the difficulty to stimulate Ln ions with the desired energy-transfer efficiency to produce stronger ECL emissions at a low potential. Here, guided by a second ligand-assisted energy-transfer strategy, we present an efficient self-enhanced luminescence mixed-ligand Eu-MOF as an ECL signal probe for an oriented antibody-decorated biosensing platform with a low detection limit and a broad detection range. Diamino terephthalic acid (NH2-H2BDC) and 1,10-phenanthroline (Phen) were selected as the first and second ligands, respectively, to form highly conjugated structures, as well as suppress the nonradiative energy transfer. Impressively, Phen precisely adjusts the energy gap between the triplet ligand and the excited state of Eu3+, realizing the self-enhancement of ECL efficiency of the Eu-MOF. The mixed ligand adjusted the molar ratio to obtain the stable and strong ECL signal at a lowered triggering potential (0.83 V). In addition, FeCo@CNT features densely active FeCo sites along with a rich hierarchy conductive carbon nanotube (CNT) network, which is efficiently a co-reaction accelerator to produce more TPA•+ radicals to accelerate the reduction process of the Eu-MOF for achieving the ECL emission amplification. FeCo@CNT with heptapeptide HWRGWVC (HWR) constructed a matrix biosensing interface that allowed the fragment antigen-binding (Fab) regions to target specific antigens and enhance the incubation efficiency. The present study has gone some way toward designing a self-enhanced luminous Eu-MOF, thus giving new fresh impetus to develop high-performance ECL emitters for biological analysis.
Collapse
Affiliation(s)
- Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Zhen Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
9
|
The role of doping strategy in nanoparticle-based electrochemiluminescence biosensing. Bioelectrochemistry 2022; 148:108249. [PMID: 36029761 DOI: 10.1016/j.bioelechem.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Doping plays a crucial role in electrochemiluminescence (ECL) due to the followings: (1) Modulation of electronic structure, alteration of the surface state of nanoparticles (NPs), providing effective protection from the surrounding environment, thereby leading to ECL emitters with exceptional properties including tunable spectra, high luminescence efficiency, low excitation potential, and good stability. (2) Employment of doped NPs as promising coreactant alternatives due to the presence of functional groups such as amines induced by NP doping. (3) Serving as novel co-reaction accelerators (CRAs) for ECL through doping induced high catalytic properties. (4) Behaving as excellent carriers to load ECL emitters, recognition elements, and catalysts due to doping-induced larger surface area, higher conductivity and better biocompatibility of NPs. As a consequence, doped NPs have aroused broad interest and found wide applications in various ECL sensing platforms. In this review, the current promising improvements, concepts, and excellent applications of doped NPs for ECL biosensing are addressed. We aim to bring to light the physicochemical characteristics of various doped NPs that endow them with appealing ECL performance, leading to diverse applications in biosensing.
Collapse
|
10
|
Chi H, Li Y, Liu G. A molecularly imprinted electrochemical sensor based on a
MoS
2
/peanut shell carbon complex coated with
AuNPs
and nitrogen‐doped carbon dots for selective and rapid detection of benzo(a)pyrene. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Chi
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yujie Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| |
Collapse
|
11
|
Yang YT, Liu JL, Sun MF, Yuan R, Chai YQ. Highly Efficient Electrochemiluminescence of MnS:CdS@ZnS Core-Shell Quantum Dots for Ultrasensitive Detection of MicroRNA. Anal Chem 2022; 94:6874-6881. [PMID: 35483064 DOI: 10.1021/acs.analchem.2c00970] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, a novel electrochemiluminescence (ECL) biosensor was developed for ultrasensitive detection of microRNA let-7a (miRNA let-7a) based on MnS:CdS@ZnS core-shell quantum dots (QDs) as ECL luminophores with high ECL efficiency. Impressively, compared to the CdS:Mn@ZnS QDs prepared by ionic doping with ECL efficiency of 0.87%, MnS:CdS@ZnS QDs synthesized by bimetallic clusters (Cd2Mn2O4) doping exhibited high ECL efficiency of up to 15.84% with S2O82- as cathodic coreactant due to the elimination of the dopants size mismatch and "self-purification" effect, which could achieve the surface defect passivation of MnS:CdS@ZnS QDs for effectively improving the ECL emission. Furthermore, with the help of strand displacement amplification (SDA), the trace target miRNA let-7a was able to be converted to a number of output DNA labeled with ferrocene (Fc) to construct an ultrasensitive ECL biosensor. The well-designed ECL biosensor for miRNA let-7a exhibited high stability and excellent sensitivity of a concentration variation from 10 aM to 1 nM and a low detection limit of 4.1 aM, which was further applied to the analysis of miRNA let-7a from cancer cell (MCF-7) lysate. Thus, this strategy provides a novel method to prepare high-efficient ECL emitters for the construction of ECL biosensing platforms in biological fields and clinical diagnosis.
Collapse
Affiliation(s)
- Yu-Ting Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Man-Fei Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
12
|
Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens Bioelectron 2022; 201:113932. [DOI: 10.1016/j.bios.2021.113932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022]
|
13
|
Liu X, Li L, Li F, Zhao W, Luo L, Bi X, Li X, You T. An ultra-high-sensitivity electrochemiluminescence aptasensor for Pb 2+ detection based on the synergistic signal-amplification strategy of quencher abscission and G-quadruplex generation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127480. [PMID: 34666293 DOI: 10.1016/j.jhazmat.2021.127480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Signal amplification provides an effective way to improve detection performance. Herein, an ultrasensitive electrochemiluminescence (ECL) aptasensor for Pb2+ detection was developed based on a dual signal-amplification strategy of the abscission of a quencher and the generation of a G-quadruplex by one-step and simultaneous way. Nitrogen-doped carbon quantum dots linked with complementary DNA (cDNA-NCQDs) at the sensing interface was applied as the quencher of a tris(4,4'-dicarboxylic acid-2,2'-bipyridyl)ruthenium(II) (Ru(dcbpy)32+)/tripropylamine system to minimize the ECL signal due to the intermolecular hydrogen bond-induced energy-transfer process. Upon the addition of Pb2+, its specific binding with the aptamer triggered the abscission of cDNA-NCQDs, accompanied by the formation of G-quadruplex on the surface of the electrode, both of which amplified the intensity of the light emission. The ECL amplification efficiency induced by the above two mechanisms (78.6%) was valuably greater than that of their sum value (69.3%). This synergistic effect resulted in high detection sensitivity of the ECL aptasensor, which allowed to thereby obtain Pb2+ measurements in the range of 1 fM - 10 nM with an ultra-low detection limit of 0.19 fM. The Pb2+-mediated synergistic signal-amplification ECL strategy can provide a new approach for integrating various amplification strategies.
Collapse
Affiliation(s)
- Xiaohong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fang Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wanlin Zhao
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
14
|
Li L, Chen B, Liu X, Jiang P, Luo L, Li X, You T. ‘On-off-on’ electrochemiluminescent aptasensor for Hg2+ based on dual signal amplification enabled by a self-enhanced luminophore and resonance energy transfer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Wang B, Wang C, Li Y, Liu X, Wu D, Wei Q. Electrochemiluminescence biosensor for cardiac troponin I with signal amplification based on a MoS 2@Cu 2O–Ag-modified electrode and Ce:ZnO-NGQDs. Analyst 2022; 147:4768-4776. [DOI: 10.1039/d2an01341j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive sandwiched electrochemiluminescence (ECL) immunosensor was built for the detection of cTnI. The ECL immunosensor had a low detection limit (2.90 fg mL−1) and wide detection range (10 pg mL−1 to 100 ng mL−1).
Collapse
Affiliation(s)
- Beibei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
16
|
Liu Q, Fei A, Wang K. An immobilization-free and homogeneous electrochemiluminescence assay for detection of environmental pollutant graphene oxide in water. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|