1
|
Zhou P, Yu M, Pan Y, Pan W, Li N, Tang B. An Au-Se bond-based fluorescent nanoprobe for thermophoretic aggregation imaging of exosomal miRNAs. Biosens Bioelectron 2025; 278:117354. [PMID: 40086118 DOI: 10.1016/j.bios.2025.117354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Exosomal microRNAs (miRNAs) have recently gained prominence as promising biomarkers for non-invasive lung cancer screening. In this study, we innovatively developed an innovative fluorescent nanoprobe based on stable Au-Se bonds to detect lung cancer-associated miRNAs in exosomes. This nanoprobe integrates gold nanoparticles with selenated DNA molecular beacons (MBs) conjugated via 1,4-phenyldiisothiocyanate (PDITC). It demonstrates exceptional stability in high-thiol environments, making it ideal for high-fidelity imaging and biomarker detection in biological settings. By integrating molecular beacons that specifically recognize and bind to target exosomal miRNAs, the nanoprobe enables precise detection. Thermophoretic aggregation imaging of exosomes was achieved using confocal fluorescence microscopy with 1064 nm laser irradiation. Our findings demonstrate that this nanoprobe efficiently identifies lung cancer-related miRNAs in exosomes, providing a promising candidate for early lung cancer detection in clinical applications.
Collapse
Affiliation(s)
- Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Mengyao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yingbo Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
2
|
Arora P, Zheng H, Munusamy S, Jahani R, Guan X. Nanopore-based detection of periodontitis biomarker miR31 in saliva samples. Electrophoresis 2024; 45:2034-2044. [PMID: 39165194 PMCID: PMC11663126 DOI: 10.1002/elps.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
MicroRNAs (miRNAs) play important roles in posttranscriptional gene regulation. Aberrations in the miRNA levels have been the cause behind various diseases, including periodontitis. Therefore, sensitive, specific, and accurate detection of disease-associated miRNAs is vital to early diagnosis and can facilitate inhibitor screening and drug design. In this study, we developed a label-free, real-time sensing method for the detection of miR31, which has been frequently linked to periodontitis, using an engineered protein nanopore and in the presence of a complementary ssDNA as a molecular probe. Our method is rapid and highly sensitive with nanomolar concentration of miR31 that could be determined in minutes. Furthermore, our sensor showed high selectivity toward the target miR31 sequence even in the presence of interfering nucleic acids. In addition, artificial saliva and human saliva samples were successfully analyzed. Our developed nanopore sensing platform could be used to detect other miRNAs and offers a potential application for the clinical diagnosis of disease biomarkers.
Collapse
Affiliation(s)
- Pearl Arora
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | | | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Alexandre D, Fernandes AR, Baptista PV, Cruz C. Evaluation of miR-155 silencing using a molecular beacon in human lung adenocarcinoma cell line. Talanta 2024; 274:126052. [PMID: 38608633 DOI: 10.1016/j.talanta.2024.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.
Collapse
Affiliation(s)
- Daniela Alexandre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
| |
Collapse
|
4
|
Yang J, Yu Y, Cao Y, Guo M, Lin B. Self-assembly of hyperbranched DNA network structure for signal amplification detection of miRNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124192. [PMID: 38552541 DOI: 10.1016/j.saa.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) can achieve the high sensitivity and rapid reaction rate in detecting miRNA. However, the amplification efficiency by these methods are limited. Herein, an enzyme-free and label-free hyperbranched DNA network structure (HDNS) was designed, in which localized catalytic hairpin assembly (LCHA) and hybridization chain reaction occurred in the horizontal axis and longitudinal axis, respectively, exhibiting intensive signal dual-amplification. miRNA-122 was selected as the target on behalf of miRNA to design the HDNS sensor. The fluorescence signal change of HDNS showed good linearity for detecting miRNA-122 in the concentration range from 0.1 nM to 60 nM with a limit of detection (LOD) at 37 pM which was lower than those of the sensors based on separate CHA or HCR. Afterwards, the HDNS sensor was applied to detect miRNA-122 in serum samples with the recovery rate in the range of 97.2 %-107 %. The sensor could distinguish different kinds of miRNAs, even the family members with high sequence homology, exhibiting excellent selectivity. This method provided a novel design strategy for improving the sensitivity and selectivity of DNA sensor for miRNA detection.
Collapse
Affiliation(s)
- Jiayi Yang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
5
|
Fu Y, Si H, Chen J, Zhang W, Feng S, Xiao Z. A Novel “Turn‐On” Fluorescent Sensor for Screening Triplex DNA Binder Based upon Molecular Beacon. ChemistrySelect 2022. [DOI: 10.1002/slct.202203178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanxiang Fu
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Hengdan Si
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Juan Chen
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Wenjuan Zhang
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Shuang Feng
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| | - Zhiyou Xiao
- School of Chemical Engineering Guizhou Institute of Technology 1st, Caiguan Road Guiyang 550003 P. R. China
| |
Collapse
|
6
|
Zhao J, Chen CX, Zhu JW, Zong HL, Hu YH, Wang YZ. Ultrasensitive and Visual Electrochemiluminescence Ratiometry Based on a Constant Resistor-Integrated Bipolar Electrode for MicroRNA Detection. Anal Chem 2022; 94:4303-4310. [PMID: 35230810 DOI: 10.1021/acs.analchem.1c04971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, a new electrochemiluminescence (ECL) platform was constructed for detecting the prostate cancer marker microRNA-141 (miRNA-141) on a constant resistor-integrated closed bipolar electrode (BPE). It consisted of two reservoirs and a constant resistor, and both ends were connected to the anode of the driving electrode and the cathode of BPE. The cathode of BPE was modified with boron nitride quantum dots (BNQDs), and the anode reservoir was the [Ru(bpy)3](PF6)2/TPrA system. After introducing a certain amount of hairpin DNA 3 (H3) and ferrocene-labeled single-stranded DNA (Fc-ssDNA) on the surface of the BNQDs, the ECL emission signal of the BNQDs was difficult to be observed by the naked eye, while [Ru(bpy)3](PF6)2 emitted a strong and visible ECL signal. In the presence of the target, bipedal DNA assembled by catalytic hairpin assembly (CHA) took away the Fc-ssDNA and the ECL intensity of the BNQDs was enlarged, and as the concentration of miRNA-141 increased to the cutoff value, yellow-green light was visible by the naked eye. Meanwhile, the red emission signal of [Ru(bpy)3](PF6)2/TPrA became weakened. Thus, an ultrasensitive "color switch" ECL biosensor for detection of miRNA-141 was constructed and endowed with a wide linear range from 10-17 to 10-7 M and a detection limit of 10-17 M (S/N = 3). This study provides the potential for investigating portable devices in the detection of low-concentration nucleic acids.
Collapse
Affiliation(s)
- Jie Zhao
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Chuan-Xiang Chen
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Jia-Wan Zhu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Hui-Long Zong
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Yong-Hong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Yin-Zhu Wang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
7
|
Yin X, Yao D, Lam MHW, Liang H. A facile biosynthesis strategy of plasmid DNA-derived nanowires for readable microRNA logic operations. J Mater Chem B 2022; 10:3055-3063. [DOI: 10.1039/d1tb02699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple microRNAs (miRNAs) logical assays have attracted wide attention recently, which can be applied to mimic and reveal cellular events at the molecular level. However, it remains challenging to develop...
Collapse
|