1
|
Moon I, Ahmadzadeh E, Kim Y, Rappaz B, Turcatti G. Automated fast label-free quantification of cardiomyocyte dynamics with raw holograms for cardiotoxicity screening. BIOMEDICAL OPTICS EXPRESS 2025; 16:398-414. [PMID: 39958849 PMCID: PMC11828440 DOI: 10.1364/boe.542362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 02/18/2025]
Abstract
Traditional cell analysis approaches based on quantitative phase imaging (QPI) necessitate a reconstruction stage, which utilizes digital holography. However, phase retrieval processing can be complicated and time-consuming since it needs numerical reconstruction and then phase unwrapping. For analysis of cardiomyocyte (CM) dynamics, it was reported that by estimating the spatial variance of the optical path difference from QPI, the spatial displacement of CMs can be quantified, thereby enabling monitoring of the excitation-contraction activity of CMs. Also, it was reported that the Farnebäck optical flow method could be combined with the holographic imaging information from QPI to characterize the contractile motion of single CMs, enabling monitoring of the mechanical beating activity of CMs for cardiotoxicity screening. However, no studies have analyzed the contractile dynamics of CMs based on raw holograms. In this paper, we present a fast, label-free, and high throughput method for contractile dynamic analysis of human-induced pluripotent stem cell-derived CMs using raw holograms or the filtered holograms, which are obtained by filtering only The proposed approach obviates the need for time-consuming numerical reconstruction and phase unwrapping for CM's dynamic analysis while still having performance comparable to that of the previous methods. Accordingly, we developed a computational algorithm to characterize the CM's functional behaviors from contractile motion waveform obtained from raw or filtered holograms, which allows the calculation of various temporal metrics related to beating activity from contraction-relaxation motion-speed profile. To the best of our knowledge, this approach is the first to analyze drug-treated CM's dynamics from raw or filtered holograms without the need for numerical phase image reconstruction. For one hologram, the reconstruction process itself in the existing methods takes at least three times longer than the process of tracking the contraction-relaxation motion-speed profile using optical flow in the proposed method. Furthermore, our proposed methodology was validated in the toxicity screening of two drugs (E-4031 and isoprenaline) with various concentrations. The findings provide information on CM contractile motion and kinetics for cardiotoxicity screening.
Collapse
Affiliation(s)
- Inkyu Moon
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Dae-gu 42988, Republic of Korea
| | - Ezat Ahmadzadeh
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Dae-gu 42988, Republic of Korea
| | - Youhyun Kim
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Dae-gu 42988, Republic of Korea
| | - Benjamin Rappaz
- Biomolecular Screening Facility, Ecole Polytechnique Fedérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fedérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Zheng J, Fang J, Xu D, Liu H, Wei X, Qin C, Xue J, Gao Z, Hu N. Micronano Synergetic Three-Dimensional Bioelectronics: A Revolutionary Breakthrough Platform for Cardiac Electrophysiology. ACS NANO 2024; 18:15332-15357. [PMID: 38837178 DOI: 10.1021/acsnano.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and therefore pose a significant threat to human health. Cardiac electrophysiology plays a crucial role in the investigation and treatment of CVDs, including arrhythmia. The long-term and accurate detection of electrophysiological activity in cardiomyocytes is essential for advancing cardiology and pharmacology. Regarding the electrophysiological study of cardiac cells, many micronano bioelectric devices and systems have been developed. Such bioelectronic devices possess unique geometric structures of electrodes that enhance quality of electrophysiological signal recording. Though planar multielectrode/multitransistors are widely used for simultaneous multichannel measurement of cell electrophysiological signals, their use for extracellular electrophysiological recording exhibits low signal strength and quality. However, the integration of three-dimensional (3D) multielectrode/multitransistor arrays that use advanced penetration strategies can achieve high-quality intracellular signal recording. This review provides an overview of the manufacturing, geometric structure, and penetration paradigms of 3D micronano devices, as well as their applications for precise drug screening and biomimetic disease modeling. Furthermore, this review also summarizes the current challenges and outlines future directions for the preparation and application of micronano bioelectronic devices, with an aim to promote the development of intracellular electrophysiological platforms and thereby meet the demands of emerging clinical applications.
Collapse
Affiliation(s)
- Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Haitao Liu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| |
Collapse
|
3
|
Xiang Y, Liu H, Yang W, Xu Z, Wu Y, Tang Z, Zhu Z, Zeng Z, Wang D, Wang T, Hu N, Zhang D. A biosensing system employing nanowell microelectrode arrays to record the intracellular potential of a single cardiomyocyte. MICROSYSTEMS & NANOENGINEERING 2022; 8:70. [PMID: 35774495 PMCID: PMC9237042 DOI: 10.1038/s41378-022-00408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording is a widely used method to investigate cardiovascular pathology, pharmacology and developmental biology. Microelectrode arrays record the electrical potential of cells in a minimally invasive and high-throughput way. However, commonly used microelectrode arrays primarily employ planar microelectrodes and cannot work in applications that require a recording of the intracellular action potential of a single cell. In this study, we proposed a novel measuring method that is able to record the intracellular action potential of a single cardiomyocyte by using a nanowell patterned microelectrode array (NWMEA). The NWMEA consists of five nanoscale wells at the center of each circular planar microelectrode. Biphasic pulse electroporation was applied to the NWMEA to penetrate the cardiomyocyte membrane, and the intracellular action potential was continuously recorded. The intracellular potential recording of cardiomyocytes by the NWMEA measured a potential signal with a higher quality (213.76 ± 25.85%), reduced noise root-mean-square (~33%), and higher signal-to-noise ratio (254.36 ± 12.61%) when compared to those of the extracellular recording. Compared to previously reported nanopillar microelectrodes, the NWMEA could ensure single cell electroporation and acquire high-quality action potential of cardiomyocytes with reduced fabrication processes. This NWMEA-based biosensing system is a promising tool to record the intracellular action potential of a single cell to broaden the usage of microelectrode arrays in electrophysiological investigation.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Obstetrics and Gynecology, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, 523058 China
| | - Haitao Liu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
- Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhaojian Tang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhijing Zhu
- Key Laboratory of Novel Target and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou, 310015 China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Zhiyong Zeng
- School of Automation, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Depeng Wang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
| | - Tianxing Wang
- E-LinkCare Meditech Co., Ltd, Hangzhou, 310011 China
| | - Ning Hu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, Zhejiang University, Hangzhou, 310058 China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| |
Collapse
|
4
|
Wang H, Wu Y, Zou Q, Yang W, Xu Z, Dong H, Zhu Z, Wang D, Wang T, Hu N, Zhang D. A biosensing system using a multiparameter nonlinear dynamic analysis of cardiomyocyte beating for drug-induced arrhythmia recognition. MICROSYSTEMS & NANOENGINEERING 2022; 8:49. [PMID: 35547605 PMCID: PMC9081091 DOI: 10.1038/s41378-022-00383-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular disease is the number one cause of death in humans. Therefore, cardiotoxicity is one of the most important adverse effects assessed by arrhythmia recognition in drug development. Recently, cell-based techniques developed for arrhythmia recognition primarily employ linear methods such as time-domain analysis that detect and compare individual waveforms and thus fall short in some applications that require automated and efficient arrhythmia recognition from large datasets. We carried out the first report to develop a biosensing system that integrated impedance measurement and multiparameter nonlinear dynamic algorithm (MNDA) analysis for drug-induced arrhythmia recognition and classification. The biosensing system cultured cardiomyocytes as physiologically relevant models, used interdigitated electrodes to detect the mechanical beating of the cardiomyocytes, and employed MNDA analysis to recognize drug-induced arrhythmia from the cardiomyocyte beating recording. The best performing MNDA parameter, approximate entropy, enabled the system to recognize the appearance of sertindole- and norepinephrine-induced arrhythmia in the recording. The MNDA reconstruction in phase space enabled the system to classify the different arrhythmias and quantify the severity of arrhythmia. This new biosensing system utilizing MNDA provides a promising and alternative method for drug-induced arrhythmia recognition and classification in cardiological and pharmaceutical applications.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006 China
| | - Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, 311121 China
| | - Quchao Zou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, The Second Affiliated Hospital Zhejiang University School of Medicine, Department of Clinical Medical Engineering, Zhejiang University, Hangzhou, 310058 China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, 311121 China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, 311121 China
| | - Hao Dong
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, 311121 China
| | - Zhijing Zhu
- Key Laboratory of Novel Target and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou, 310015 China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Depeng Wang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
| | - Tianxing Wang
- E-LinkCare Meditech Co., Ltd., Hangzhou, 310011 China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, The Second Affiliated Hospital Zhejiang University School of Medicine, Department of Clinical Medical Engineering, Zhejiang University, Hangzhou, 310058 China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050 China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, 311121 China
| |
Collapse
|