1
|
He T, Li D, Qin Y, Xiang Y, Tang Y, Tian J, Tang Y. Element-bridged dual-walker amplification for sensitive detection of multiple miRNAs by inductively coupled plasma mass spectrometry. Talanta 2025; 293:128069. [PMID: 40203602 DOI: 10.1016/j.talanta.2025.128069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The simultaneous detection of multiple microRNAs (miRNAs) is critical for advancing precise disease diagnosis and treatment strategies. Herein, we introduce a novel method for the sensitive detection of multiple miRNAs using inductively coupled plasma mass spectrometry (ICP-MS), based on a platinum group element-bridged DNAzyme dual-walker amplification system. Upon binding to target miRNAs, the terminal of DNAzyme is released, triggering two DNAzyme-mediated ribonucleotide hydrolysis walking processes driven by Mg2+. These DNAzyme-walking sequences are recycled, enabling the continuous cleavage of substrate strands. After magnetic separation, the generated element pairs are quantified by mass spectrometry, enabling simultaneous and highly sensitive detection of multiple miRNAs. The method demonstrates a linear detection range from 5 fM to 10 pM with detection limits of 1.8 fM for miRNA-21, 1.1 fM for miRNA-199a, and 1.5 fM for miRNA-499, respectively.Furthermore, the approach exhibits remarkable specificity, making it suitable for detecting miRNAs in human serum. By demonstrating such a high sensitivity and specificity, this DNA walker-based sensing strategy holds significant potential for the development of versatile platforms to detect other miRNAs at varying expression levels.
Collapse
Affiliation(s)
- Tingting He
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Daxiu Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Yao Qin
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401120, PR China
| | - Yi Xiang
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401120, PR China
| | - Yike Tang
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Jian Tian
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Yaqin Tang
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
2
|
Wu Q, Feng Y, Lepoitevin M, Yu M, Serre C, Ge J, Huang Y. Metal-Organic Frameworks: Unlocking New Frontiers in Cardiovascular Diagnosis and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416302. [PMID: 40270437 DOI: 10.1002/advs.202416302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/14/2025] [Indexed: 04/25/2025]
Abstract
Cardiovascular disease (CVD) is one of the most critical diseases which is the predominant cause of death in the world. Early screening and diagnosis of the disease and effective treatment after diagnosis play an important role in the patient's recovery. Metal-organic frameworks (MOFs), a kind of hybrid ordered micro or meso-porous materials, constructed by metal nodes or clusters with organic ligands, due to their special features like high porosity and specific surface area, open metal sites, or ligand tunability, are widely used in various areas including gas storage, catalysis, sensors, biomedicine. Recently, advances in MOFs are bringing new developments and opportunities for the healthcare industry including the theranostic of CVD. In this review, the applications of MOFs are illustrated in the diagnosis and therapy of CVD, including biomarker detection, imaging, drug delivery systems, therapeutic gas delivery platforms, and nanomedicine. Also, the toxicity and biocompatibility of MOFs are discussed. By providing a comprehensive summary of the role played by MOFs in the diagnosis and treatment of CVDs, it is hoped to promote the future applications of MOFs in disease theranostics, especially in CVDs.
Collapse
Affiliation(s)
- Qilu Wu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuxiao Feng
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Meng Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Beijing, 100084, P. R. China
| | - Yuan Huang
- Cardiac Surgery Centre, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100037, P. R. China
| |
Collapse
|
3
|
Li D, Li Y, Qin Y, Tang Y, Xie X, He T, Tian J, Shi K. Inter-particle DNA walker amplification coupled with target self-convert for sensitive detection of multiple miRNA by liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2971-2977. [PMID: 40159932 DOI: 10.1039/d5ay00140d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Abnormal expression of microRNAs (miRNAs) is commonly considered as an indicator of various physical conditions. To address the separation and quantification of multiple miRNAs, an inter-particle DNA walker amplification coupled with a target self-convert system is developed for simultaneous and sensitive detection of three miRNAs by high-performance liquid chromatography (HPLC). In this work, one DNA-functionalized particle can walk around the other to produce abundant short probes realizing self-conversion of target miRNAs for detection of different short probes. This assay method shows detection limits of 1.5 fM for miRNA-21, 2.1 fM for miRNA-199a and 1.8 fM for miRNA-499. Furthermore, this method demonstrates the capability to selectively discriminate target miRNAs from interfering RNAs, ensuring high specificity under complex experimental conditions. The approach also exhibits exceptional sensitivity, allowing for the detection of low concentrations of target miRNA in human serum samples. With the successful application of this approach to three specific miRNAs, this technique can be further extended to detect other miRNAs in a convenient and efficient way.
Collapse
Affiliation(s)
- Daxiu Li
- Chongqing Key Laboratory of Target-Based Drug Discovery and Research, College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Yuhao Li
- Chongqing Key Laboratory of Target-Based Drug Discovery and Research, College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Yao Qin
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, PR China
| | - Yike Tang
- Chongqing Key Laboratory of Target-Based Drug Discovery and Research, College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Xin Xie
- Chongqing Key Laboratory of Target-Based Drug Discovery and Research, College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Tingting He
- Chongqing Key Laboratory of Target-Based Drug Discovery and Research, College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Jian Tian
- Chongqing Key Laboratory of Target-Based Drug Discovery and Research, College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Kai Shi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China.
| |
Collapse
|
4
|
Liu L, He JH, Wu XQ, Liu JJ, Lv WY, Huang CZ, Liu H, Li CM. Simultaneous detection of multiple microRNAs based on fluorescence resonance energy transfer under a single excitation wavelength. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124788. [PMID: 38986256 DOI: 10.1016/j.saa.2024.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
MicroRNAs (miRNAs) play a key role in physiological processes, and their dysregulation is closely related to various human diseases. Simultaneous detection of multiple miRNAs is pivotal to cancer diagnosis at an early stage. However, most multicomponent analyses generally involve multiple excitation wavelengths, which are complicated and often challenging to simultaneously acquire multiple detection signals. In this study, a convenient and sensitive sensor was developed to simultaneously detection of multiple miRNAs under a single excitation wavelength through the fluorescence resonance energy transfer between the carbon dots (CDs)/quantum dots (QDs) and graphene oxide (GO). A hybridization chain reaction (HCR) was triggered by miRNA-141 and miRNA-21, resulting in the high sensitivity with a limit of detection (LOD) of 50 pM (3σ/k) for miRNA-141 and 60 pM (3σ/k) for miRNA-21. This simultaneous assay also showed excellent specificity discrimination against the mismatch. Furthermore, our proposed method successfully detected miRNA-21 and miRNA-141 in human serum samples at a same time, indicating its diagnostic potential in a clinical setting.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jia Hui He
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Qiao Wu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jia Jun Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Wen Yi Lv
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Hui Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Chun Mei Li
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substance, Chongqing 401121, PR China.
| |
Collapse
|
5
|
Duan H, Li D, Wang J, Shen Y, Zheng L, Huang X. A cocatalytic nanozyme based on metal-organic framework-embedded iron porphyrin for the sensitive detection of Salmonella typhimurium in milk. Talanta 2024; 280:126765. [PMID: 39216421 DOI: 10.1016/j.talanta.2024.126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The nanozyme, acting as the signal labeling reporter, is widely employed in colorimetric immunoassays due to its exceptional catalytic activity and reliable performance. Nonetheless, when immobilized on the nanozyme's surface, there is a decline in catalytic activity, which hinders its ability to meet the escalating demand for advanced colorimetric immunoassays. Herein, we introduce a novel MILL-88@TcP nanozyme, formed by encapsulating iron porphyrins (TcP) within metal-organic frameworks (MILL-88), where the catalytic activity of TcP is fully preserved through ethanol-induced release. Leveraging the superior encapsulation capacity and enzyme-mimicking characteristics of MILL-88, the MILL-88@TcP nanozyme demonstrates a remarkable colorimetric performance, 1430-fold higher than that of MILL-88 alone. Furthermore, we developed the MILL-88@TcP nanozyme-based Enzyme-Linked Immunosorbent Assay (N-ELISA) for enhanced sensitivity in detecting Salmonella typhimurium, achieving a detection limit of 1.68 × 102 CFU/mL, approximately 500-fold enhancement compared to the traditional HRP-based ELISA (8.35 × 104 CFU/mL). Notably, the average recoveries ranged from 91.50 % to 108.50 % with a variation of 3.53 %-10.41 %, indicating high accuracy and precision. Collectively, this study highlights that the MILL-88@TcP nanozyme, with its superior catalytic performance and anti-interference capabilities, holds promise as a colorimetric labeling reporter to enhance the detection efficacy of colorimetric immunoassays and has the potential to establish a more stable and sensitive colorimetric assay platform.
Collapse
Affiliation(s)
- Hong Duan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Dongmei Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Jiali Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Yumin Shen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Lingyan Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
6
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
7
|
Xie H, Wang L, Yu X, Zhou T, Wang M, Yang J, Gao T, Li G. Synthesis of a COF-on-MOF hybrid nanomaterial for enhanced colorimetric biosensing. Talanta 2024; 274:126071. [PMID: 38604045 DOI: 10.1016/j.talanta.2024.126071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
The construction of hybrid materials is significant for the exploration of functionalities in colorimetric biosensing due to its structural designability and synergy effects. In this work, a COF-on-MOF hybrid nanomaterial has been newly synthesized for colorimetric biosensing. Experimental results reveal that on-surface synthesis of COF on MOF brings nanoscale proximity between COF and MOF, which exhibits more than two folds of peroxidase-like activity as compared to single Fe-MOF. Therefore, by using the MCA@Fe-MOF nanomaterial with the assist of a specific acetyl-peptide, MCA@Fe-MOF can serve as an efficient signal reporter for colorimetric assay of histone deacetylase (HDAC), and the limit of detection (LOD) can be as low as 0.261 nM. Looking forward, the demand for diverse and promising COF-on-MOF nanomaterials with varied functionalities is anticipated, propelling further exploration of their role in colorimetric biosensing.
Collapse
Affiliation(s)
- Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Lin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xiaomeng Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Minghui Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
8
|
Yang X, Zhao L, Yang S, Tang M, Fa H, Huo D, Hou C, Yang M. Label-free fluorescent sensor for sensitive detection of ctDNA based on water stabilized CsPbBr 3 nanosheet. Biosens Bioelectron 2024; 253:116165. [PMID: 38437747 DOI: 10.1016/j.bios.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
The detection of circulating tumor DNA (ctDNA), as a practical liquid biopsy technique, was of great significance for the study of cancer diagnosis and prognosis. However, reported methods for detection ctDNA still have some limitations, such as tedious process and high cost. In this study, CsPbBr3 nanosheet (CsPbBr3 NS) with high water stability was prepared by etching, and its fluorescence intensity could be stably stored for 1 year. The Ti3C2Tx possessed high quenching efficiency for CsPbBr3 NS and the HOMO-LUMO orbital study revealed that the PET mechanism was responsible for fluorescence quenching. And the Ti3C2Tx showed stronger affinity towards single-stranded DNA (ssDNA), as compared with double-stranded DNA (dsDNA). The probe ssDNA could be adsorbed on the surface of Ti3C2Tx through π-π stacking. After the targets were recognized by probe ssDNA to form dsDNA, its affinity with Ti3C2Tx decreased and the active site of Ti3C2Tx recovered, causing a high quenching efficiency on CsPbBr3 NS. Based on this, a label-free fluorescent biosensor was designed for the sensitive detection of ctDNA (EGFR 19 Dels for non-small cell lung cancer, NSCLC). Under the optimal experimental conditions, this biosensor exhibited a detection limit of 180 fM and a linear range of 50 pM-350 pM with amplification of magnetic beads through strand displacement reaction. In addition, this sensor was applied to the detection of ctDNA in serum samples and cells lysates. This method for ctDNA detection was expected to have great potential for biomarker detection in the field of liquid biopsy.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Liangyi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Miao Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
9
|
Chen TL, Kong XJ, Dong XX, Mao ZJ, Kong FF, Xiao Q. A novel ratiometric sensor for fluorimetric and visual dual-mode detection of Al 3+ in environmental water based on the target-regulated formation of Eu MOFs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2702-2706. [PMID: 38625145 DOI: 10.1039/d4ay00324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, a novel ratiometric sensor for fluorimetric and smartphone-assisted visual detection of Al3+ in environmental water was developed based on the target-regulated formation of Eu metal-organic frameworks (Eu MOFs). By employing 2-[4-(2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid (Hepes), Eu3+ and tetracycline (TC) as raw materials, Eu MOFs with red emission were facilely synthesized through the coordination of Eu3+ with Hepes and TC. However, upon the introduction of Al3+, a higher affinity of TC towards Al3+ resulted in the formation of a TC-Al3+ complex with green fluorescence and inhibited the generation of Eu MOFs. This led to an increase in green fluorescence and a decrease in red fluorescence accompanied by the fluorescence color of the solution changing from red to green under the illumination of the UV lamp. Thus, a ratiometric sensor for fluorimetric and the smartphone-assisted visual detection of Al3+ was established. The ratiometric sensor exhibited high sensitivity for Al3+ detection with a detection limit of 0.14 μM for fluorescence detection and 1.21 μM for visual detection. Additionally, the proposed strategy was successfully applied to detect Al3+ in the environmental water samples with satisfactory results, indicating great application prospects for environmental monitoring.
Collapse
Affiliation(s)
- Tao-Li Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Xiang-Juan Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Xin-Xin Dong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Zhi-Jie Mao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Fang-Fang Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| |
Collapse
|
10
|
He L, Wu J, Lin Z, Zhang Y, Liu P. Dual-Encoded Affinity Microbead Signature Combinatorial Profiling for Acute Myocardial Infarction High-Sensitivity Diagnosis. ACS Sens 2024; 9:2083-2090. [PMID: 38525874 DOI: 10.1021/acssensors.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The early diagnosis of acute myocardial infarction (AMI) is dependent on the combined feedback of multiple cardiac biomarkers. However, it remains challenging to precisely detect multicardiac biomarkers in complex blood early due to the lack of sensitive and specific diagnostic indicators and the low abundance and small size of associated biomarkers with high specificity (such as microRNAs). To make matters worse, spectral overlap significantly limits the multiplex analysis of cardiac biomarkers by fluorescent probes, leading to bias in the diagnosis of myocardial infarction. Herein, we developed a method for simultaneous detection of miRNAs and protein biomarkers using size- and color-coded microbeads that carry signature for target capture. We also constructed a microfluidic chip with different spacer arrays that segregate these microbeads in different chip regions according to their size to produce signature signals, indicating the level of different biomarkers. The signals on the microbeads were hugely amplified by catalytic hairpin assembly and rolling circle amplification. Notably, this strategy enables the simultaneous and in situ sensitive profiling of six kinds of biomarkers via adding two different fluorescent labels, removing the limitations of spectral overlap. We envision that the strategy has great potential for application in clinical diagnosis for AMI.
Collapse
Affiliation(s)
- Luxuan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Yi J, Han X, Jian J, Lai Y, Lu J, Peng L, Liu Z, Xue J, Zhou H, Li X. Dual-mode detection of 2,6-pyridinedicarboxylic acid based on the enhanced peroxidase-like activity and fluorescence property of novel Eu-MOFs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2606-2613. [PMID: 38618990 DOI: 10.1039/d4ay00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
2,6-Pyridinedicarboxylic acid (DPA) is a significant biomarker of anthrax, which is a deadly infectious disease for human beings. However, the development of a convenient anthrax detection method is still a challenge. Herein, we report a novel europium metal-organic framework (Eu-MOF) with an enhanced peroxidase-like activity and fluorescence property for DPA detection. The Eu-MOF was one-step synthesized using Eu3+ ions and 2-methylimidazole. In the presence of DPA, the intrinsic fluorescence of Eu3+ ions is sensitized, the fluorescence intensity linearly increases with an increase in DPA concentration, and the fluorescence color changes from blue to purple. Simultaneously, the peroxide-like activity of the Eu-MOF is enhanced by DPA, which can promote the oxidation of TMB to oxTMB. The absorbance values increase linearly with DPA concentrations, and the colorimetric images change from colorless to blue. The dual-mode detection of DPA has good sensitivity with a colorimetric detection limit of 0.67 μM and a fluorescent detection limit of 16.67 nM. Moreover, a simple detection method for DPA was developed using a smartphone with the RGB analysis system. A portable kit with standard color cards was developed using paper test strips. The proposed methods have good practicability for DPA detection in real samples. In conclusion, the developed Eu-MOF biosensor offers a valuable and general platform for anthrax diagnosis.
Collapse
Affiliation(s)
- Jintao Yi
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xianqin Han
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jiahao Jian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yayan Lai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Lei Peng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Zhongkai Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Jun Xue
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Xun Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China.
| |
Collapse
|
12
|
Zhao J, Han H, Liu Z, Chen J, Liu X, Sun Y, Wang B, Zhao B, Pang Y, Xiao R. Portable fluorescent lateral flow assay for ultrasensitive point-of-care analysis of acute myocardial infarction related microRNA. Anal Chim Acta 2024; 1295:342306. [PMID: 38355230 DOI: 10.1016/j.aca.2024.342306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Point-of-care quantitative analysis of tracing microRNA disease-biomarkers remains a great challenge in the clinical diagnosis. In this paper, we developed a portable fluorescent lateral flow assay for ultrasensitive quantified detection of acute myocardial infarction related microRNAs in bio-samples. SiO2@DQD (bilayer quantum dots assembly with SiO2 core) based fluorescent lateral flow strip was fabricated as the analysis tool. In order to quantify the tracing microRNA in biosamples, a catalytic hairpin assembly and CRISPR/Cas12a cascade amplification method was performed and combined with the fabricated SiO2@DQD lateral flow strip. Thus, our platform gathered double advantages of portability and ultrasensitive quantification. Based on our strips, target myocardial biomarker microRNA-133a can be detected with a detection limit of 0.32 fM, which was almost 1000-fold sensitive compared with previous reported microRNAs-lateral flow strips. Significantly, this portable fluorescent strip can directly detect microRNAs in serum without any pretreatment and PCR amplification steps. When spiked in serum samples, a recovery of 99.65 %-102.38 % can be obtained. Therefore, our method offers a potential tool for ultrasensitive quantification of diseases related microRNA in the point-of-care diseases diagnosis field.
Collapse
Affiliation(s)
- Junnan Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Han Han
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Zhenzhen Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Xiaoxian Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yinuo Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Bingwei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yuanfeng Pang
- Department of Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, PR China.
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.
| |
Collapse
|
13
|
Wang H, Shi L, Wang Q, Shi L, Li T. Robust noncovalent spherical nucleic acid enzymes (SNAzymes) for ultrasensitive unamplified electrochemiluminescence detection of endogenous myocardial MicroRNAs. Biosens Bioelectron 2023; 241:115687. [PMID: 37708686 DOI: 10.1016/j.bios.2023.115687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Here we develop robust noncovalent spherical nucleic acid enzymes (SNAzymes) for direct electrochemiluminescence (ECL) detection of acute myocardial infarction (AMI) related endogenous microRNAs in both circulating blood and cardiomyocytes, which circumvents the need for time-consuming signal amplification widely used in previous counterparts. It mainly relies on the super peroxidase-like activity of the designed noncovalent SNAzymes, promoted by a few nucleotides flanking on the 3'-terminals of common parallel G-quadruplexes (G4). For this reason, an unmodified G4 with an A5T30 head is well chosen and then attached robustly onto bare AuNPs via microwave-assisted heating-drying. A probe strand is meanwhile attached onto SNAzymes, enabling the target microRNA-triggered formation of a Y-shaped junction together with a capture strand tethered to a DNA tetrahedron on the electrode surface. The utilization of this tetrahedral nanoscaffold favors the ECL readout and thereby contributes to high sensitivity of the sensing platform. In this way, an AMI-related microRNA, miR-499, can be probed in a wide linear range, with a detection limit of 33 aM and high selectivity over other analogues. Furthermore, our developed sensing platform is employed to analyze endogenous miR-499 in AMI patients' blood, revealing an apparently higher level than the mean value of the healthy. What it means to patients, heart injury, is elucidated by comparing the miR-499 levels of cardiomyocytes and other tissue cells, with endogenous miR-16 as an intrinsic reference.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.
| |
Collapse
|
14
|
Gao YP, Huang KJ, Wang BY, Xu Q, Shuai H, Li G. Constructed a self-powered sensing platform based on nitrogen-doped hollow carbon nanospheres for ultra-sensitive detection and real-time tracking of double markers. Anal Chim Acta 2023; 1267:341333. [PMID: 37257968 DOI: 10.1016/j.aca.2023.341333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Acute myocardial infarction (AMI) is acute necrosis of a portion of the myocardium caused by myocardial ischemia, which seriously threatens people's health and life safety. Its early diagnosis is a difficult problem in clinical medicine. Research has found that the abnormal expression of microRNA-199a (miR-199a) and microRNA-499 (miR-499) was closely related to AMI disease. In this work, we took advantage of the structural advantages of nitrogen-doped hollow carbon nanospheres (N-HCNSs) to design an ultra-sensitive, portable real-time monitoring visual self-powered biosensor system, which based on dual-target miRNAs triggered catalytic hairpin assembly (CHA) for sensitive detection of miR-199a and miR-499. In addition, the capacitor and the smartphone are introduced into the system to realize the secondary improvement of system sensitivity and portable real-time visual monitoring. Under optimized conditions, in the linear range of 0.1-100000 aM, the detection limits of miR-199a and miR-499 are 0.031 and 0.027 aM, respectively. At the same time, the ultra-sensitive detection of miRNAs is realized in the serum sample, and the recovery rate of miR-199a and miR-499 are 98.0-106.0% (RSD: 0.6-8.1%) and 94.0-109.7% (RSD: 1.8-7.7%), respectively. The method is simple, sensitive and can be used for real-time tracking and portable monitoring of related diseases.
Collapse
Affiliation(s)
- Yong-Ping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China; School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China.
| | - Ke-Jing Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, PR China.
| | - Bo-Ya Wang
- School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China
| | - Qianyue Xu
- School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China
| | - Honglei Shuai
- School of Science and Engineering, Xinyang College, Xinyang, 464000, PR China
| | - Guoqiang Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
15
|
Niu H, Bu H, Zhao J, Zhu Y. Metal-Organic Frameworks-Based Nanoplatforms for the Theranostic Applications of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206575. [PMID: 36908079 DOI: 10.1002/smll.202206575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.
Collapse
Affiliation(s)
- Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
A three-in-one hybrid nanozyme for sensitive colorimetric biosensing of pathogens. Food Chem 2023; 408:135212. [PMID: 36535179 DOI: 10.1016/j.foodchem.2022.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Pathogen screening is an important step in preventing foodborne diseases. In this study, a hybrid nanozyme, metal organic framework decorated with palladium (Pd) and platinum (Pt) (MIL-88@Pd/Pt), was innovatively synthesized and used with immune magnetic nanobeads (MNBs) for sensitive biosensing of Salmonella. First, immune MIL-88@Pd/Pt nanozymes and immune MNBs were mixed with target pathogens in a large-volume sample, resulting in effective isolation and specific label of target pathogens to form nanobead-Salmonella-nanozyme conjugates. Then, these conjugates were used to catalyze H2O2-TMB, and its color was changed from colorless to blue. Finally, catalysate absorption was measured to determine pathogen concentration. This colorimetric immunoassay could determine Salmonella typhimurium from 4 × 101 to 4 × 105 CFU/mL in 60 min with a detection limit of 32 CFU/mL.
Collapse
|
17
|
Park JC, Na H, Choi S, Jeon H, Nam YS. Target-Catalyzed Self-Assembly of DNA-Streptavidin Nanogel for Enzyme-Free miRNA Assay. Adv Healthc Mater 2022; 12:e2202076. [PMID: 36579651 DOI: 10.1002/adhm.202202076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Rapid, sensitive, specific, and user-friendly microRNA (miRNA) assays are in high demand for point-of-care diagnosis. Target-catalyzed toehold-mediated strand displacement (TMSD) has received increasing attention as an enzyme-free molecular tool for DNA detection. However, the application of TMSD to miRNA targets is challenging because relatively weak DNA/RNA hybridization leads to failure in the subtle kinetic control of multiple hybridization steps. Here, a simple method is presented for miRNA assay based on the one-pot self-assembly of Y-shaped DNAs with streptavidin via an miRNA-catalyzed TMSD cascade reaction. A single miRNA catalyzes the opening cycle of DNA hairpin loops to generate multiple Y-shaped DNAs carrying biotin and a quencher at the end of their arms. Introducing a single base-pair mismatch near the toehold facilitates RNA-triggered strand displacement while barely disturbing nonspecific reactions. The Y-shaped DNAs are self-assembled with fluorescently labeled streptavidin (sAv), which produces nanoscale DNA-sAv nanogel particles mediating efficient Förster resonance energy transfer in their 3D network. The enhancing effect dramatically reduces the detection limit from the nanomolar level to the picomolar level. This work proves that TMSD-based DNA nanogel with a base-pair mismatch incorporated to a hairpin structure is a promising approach towards sensitive and accurate miRNA assay.
Collapse
Affiliation(s)
- Jae Chul Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyebin Na
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Huiju Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Du JF, Chen JS, Liu XP, Mao CJ, Jin BK. Coupled electrochemiluminescent and resonance energy transfer determination of microRNA-141 using functionalized Mxene composite. Mikrochim Acta 2022; 189:264. [PMID: 35776207 DOI: 10.1007/s00604-022-05359-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
The electrochemiluminescence and resonance energy transfer (ECL-RET) method was adopted to detect miRNAs, in which the two-dimensional Ti3C2 Mxenes with high surface area modified with CdS:W nanocrystals (CdS:W NCs) were used as ECL signal emitter. Mxenes with a specific surface area of 5.2755 m2/g carried more emitters and promote ECL intensity. As an energy acceptor, BiOCl nanosheets (BiOCl NSs) have a wide UV-Vis absorption peak in the range 250 nm-700 nm, including the emission band of CdS:W NCs with 520 nm emission wavelength. Hence, BiOCl NSs are covalently bound to hairpin DNA 2 by amide bond to quench the ECL signal of CdS:W NCs. In the presence of miRNA-141, the hairpin DNA 1 modified on the GCE was unfold and then paired with hairpin DNA 2 to release miRNA-141 and quench the signal of the ECL biosensor. Then, the concentration signal of miRNA-141 was amplified by catalytic hairpin assembly. The novel specific biosensor demonstrated a satisfactory linear relationship with miRNA-141 in the range 0.6 pM to 4000 pM; the detection limit was as low as 0.26 pM (3 s/m) under the potential of 0 ~ -1.3 V and showed outstanding RSD of 1.19%. The findings of the present work with high accuracy and sensitivity will be of positive significance for the clinical diagnosis of miRNA in the future work. The construction process of the biosensor and electrochemiluminescence mechanism.
Collapse
Affiliation(s)
- Jin-Feng Du
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China.
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|