1
|
Andone BA, Handrea-Dragan IM, Botiz I, Boca S. State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102709. [PMID: 37717928 DOI: 10.1016/j.nano.2023.102709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
According to the latest World Health Organization statistics, around 50 to 80 million people worldwide suffer from infertility, amongst which male factors are responsible for around 20 to 30 % of all infertility cases while 50 % were attributed to the female ones. As it is becoming a recurrent health problem worldwide, clinicians require more accurate methods for the improvement of both diagnosis and treatment schemes. By emphasizing the potential use of innovative methods for the rapid identification of the infertility causes, this review presents the news from this dynamic domain and highlights the benefits brought by emerging research fields. A systematic description of the standard techniques used in clinical protocols for diagnosing infertility in both genders is firstly provided, followed by the presentation of more accurate and comprehensive nanotechnology-related analysis methods such as nanoscopic-resolution imaging, biosensing approaches and assays that employ nanomaterials in their design. Consequently, the implementation of nanotechnology related tools in clinical practice, as recently demonstrated in the selection of spermatozoa, the detection of key proteins in the fertilization process or the testing of DNA integrity or the evaluation of oocyte quality, might confer excellent advantages both for improving the assessment of infertility, and for the success of the fertilization process.
Collapse
Affiliation(s)
- Bianca-Astrid Andone
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Iuliana M Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Santana PA, Álvarez CA, Valenzuela S, Manchego A, Guzmán F, Tirapegui C, Ahumada M. Stability of ACE2 Peptide Mimetics and Their Implications on the Application for SARS-CoV2 Detection. BIOSENSORS 2023; 13:bios13040473. [PMID: 37185548 PMCID: PMC10136198 DOI: 10.3390/bios13040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
The SARS-CoV-2 worldwide outbreak prompted the development of several tools to detect and treat the disease. Among the new detection proposals, the use of peptides mimetics has surged as an alternative to avoid the use of antibodies, of which there has been a shortage during the COVID-19 pandemic. However, the use of peptides in detection systems still presents some questions to be answered, mainly referring to their stability under different environmental conditions. In this work, we synthesized an ACE2 peptide mimic and evaluated its stability in different pH, salinity, polarity, and temperature conditions. Further, the same conditions were assessed when using the ability of the peptide mimic to detect the recombinant SARS-CoV-2 spike protein in a biotin-streptavidin-enzyme-linked assay. Finally, we also tested the capacity of the peptide to detect SARS-CoV-2 from patients' samples. The results indicate that the peptide is structurally sensitive to the medium conditions, with relevance to the pH, where basic pH favored its performance when used as a SARS-CoV-2 detector. Further, the proposed peptide mimic was able to detect SARS-CoV-2 comparably to RT-qPCR results. Therefore, the present study promotes knowledge advancement, particularly in terms of stability considerations, in the application of peptide mimics as a replacement for antibodies in detection systems.
Collapse
Affiliation(s)
- Paula A Santana
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910272, Chile
| | - Claudio A Álvarez
- Laboratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Larrondo 1281, Coquimbo 1780000, Chile
- Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - Santiago Valenzuela
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910272, Chile
| | - Alberto Manchego
- Laboratorio de Microbiología, Facultad de Medicina Veterinaria y Parasitología Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 3673, Peru
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Cristian Tirapegui
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago 8910272, Chile
| | - Manuel Ahumada
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago 8910272, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago 8910272, Chile
| |
Collapse
|
3
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
4
|
Mintziori G, Duntas LH, Veneti S, Goulis DG. Metabolic, Oxidative and Psychological Stress as Mediators of the Effect of COVID-19 on Male Infertility: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095277. [PMID: 35564672 PMCID: PMC9099932 DOI: 10.3390/ijerph19095277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
Abstract
Over 300 million patients with coronavirus disease 2019 (COVID-19) have been reported worldwide since the outbreak of the pandemic in Wuhan, Hubei Province, China. COVID-19 is induced by the acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The effect of SARS-CoV-2 infection on the male reproductive system is unclear. The aim of this review is to assess the effect of SARS-CoV-2 infection on male fertility and the impact of possible mediators, such as metabolic, oxidative and psychological stress. SARS-CoV-2 infection aggravates metabolic stress and directly or indirectly affects male fertility by reducing seminal health. In addition, SARS-CoV-2 infection leads to excessive production of reactive oxygen species (ROS) and increased psychological distress. These data suggest that SARS-CoV-2 infection reduces male fertility, possibly by means of metabolic, oxidative and psychological stress. Therefore, among other consequences, the possibility of COVID-19-induced male infertility should not be neglected.
Collapse
Affiliation(s)
- Gesthimani Mintziori
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki Medical School, Papageorgiou Gneral Hospital, 56429 Thessaloniki, Greece; (S.V.); (D.G.G.)
- Correspondence:
| | - Leonidas H. Duntas
- Unit of Endocrinology, Diabetes and Metabolism, Thyroid Section, Evgenideion Hospital, University of Athens, 20 Papadiamantopoulou Str., 11528 Athens, Greece;
| | - Stavroula Veneti
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki Medical School, Papageorgiou Gneral Hospital, 56429 Thessaloniki, Greece; (S.V.); (D.G.G.)
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki Medical School, Papageorgiou Gneral Hospital, 56429 Thessaloniki, Greece; (S.V.); (D.G.G.)
| |
Collapse
|