1
|
Jiao JB, Kang Q, Cui SX, Cao JL, Lin T, Ma CJ, Xiao ZH, Du T, Wang N, Du XJ, Wang S. Target-driven functionalized DNA hydrogel capillary sensor for SARS-CoV-2 dual-mode detection. Talanta 2025; 285:127342. [PMID: 39644672 DOI: 10.1016/j.talanta.2024.127342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused secondary pandemic, which still poses a serious threat to physical health and economic development. Herein, the target-driven functionalized DNA hydrogel capillary sensor based on cascade signal amplification and carbon coated cobalt manganese modified by prussian blue and platinum nanoparticles (MnCo@C-Pt-PB NPs) has been successfully developed for dual-mode detection of SARS-CoV-2. The cascade signal amplification triggered by target RNA causes the permeability of the DNA hydrogel loaded in the capillary to be destroyed, thereby releasing the embedded MnCo@C-Pt-PB NPs as signal molecules into 3,3',5,5'-tetramethylbenzidine/hydrogen peroxide (TMB/H2O2) solution under the driving of capillarity. The colorless TMB is then catalyzed to blue oxidation products (oxTMB) due to peroxidase-like activity of MnCo@C-Pt-PB NPs, and MnCo@C-Pt-PB NPs and oxTMB with photothermal properties synergistically increase the system temperature under near-infrared irradiation, which are recorded by portable devices to achieve dual-mode detection. Signals intensity are proportional to the logarithm of T-RNA concentration in a wide detection range (100 aM-100 pM), with a detection limit of 100 aM. Moreover, the reliability of the developed method in oropharyngeal swabs samples has also been validated. The signal conversion and amplification function of functionalized DNA hydrogel enhances the convenience, sensitivity and versatility of the developed method, which is promising to be applied in environmental safety, molecular diagnostic assays and disease prevention.
Collapse
Affiliation(s)
- Jing-Bo Jiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qing Kang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shu-Xin Cui
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiang-Li Cao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tong Lin
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chen-Jing Ma
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ze-Hui Xiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Wang Z, Liu M, Lin H, Zhu G, Dong Z, Wu N, Fan Y, Xu G, Chang L, Wang Y. An Ion Concentration Polarization Microplatform for Efficient Enrichment and Analysis of ctDNA. ACS NANO 2024; 18:2872-2884. [PMID: 38236597 DOI: 10.1021/acsnano.3c07137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Strategies for rapid, effective nucleic acid processing hold tremendous significance to the clinical analysis of circulating tumor DNA (ctDNA), a family of important markers indicating tumorigenesis and metastasis. However, traditional techniques remain challenging to achieve efficient DNA enrichment, further bringing about complicated operation and limited detection sensitivity. Here, we developed an ion concentration polarization microplatform that enabled highly rapid, efficient enrichment and purification of ctDNA from a variety of clinical samples, including serum, urine, and feces. The platform demonstrated efficiently separating and enriching ctDNA within 30 s, with a 100-fold improvement over traditional methods. Integrating an on-chip isothermal amplification module, the platform further achieved 100-fold enhanced sensitivity in ctDNA detection, which significantly eliminated false-negative results in the serum or urine samples due to the low abundance of ctDNA. Such a simple-designed platform offers a user-friendly yet powerful diagnosis technique with a wide applicability, ranging from early tumor diagnosis to infection screening.
Collapse
Affiliation(s)
- Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Ming Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China
| | - Guiying Zhu
- School of Biomedical Engineering/Med-X, Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Gaolian Xu
- School of Biomedical Engineering/Med-X, Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Sci-Tech InnoCenter for Infection & Immunity, Shanghai, 200000, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
4
|
Sen P, Zhang Z, Li P, Adhikari BR, Guo T, Gu J, MacIntosh AR, van der Kuur C, Li Y, Soleymani L. Integrating Water Purification with Electrochemical Aptamer Sensing for Detecting SARS-CoV-2 in Wastewater. ACS Sens 2023; 8:1558-1567. [PMID: 36926840 PMCID: PMC10042147 DOI: 10.1021/acssensors.2c02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.
Collapse
Affiliation(s)
- Payel Sen
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Phoebe Li
- Department of Physics, McMaster
University, Hamilton L8S 4K1, Canada
| | - Bal Ram Adhikari
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Tianyi Guo
- Forsee Instruments, Ltd.,
Hamilton L8P0A1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | | | | | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| | - Leyla Soleymani
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| |
Collapse
|
5
|
Wang D, Wang X, Ye F, Zou J, Qu J, Jiang X. An Integrated Amplification-Free Digital CRISPR/Cas-Assisted Assay for Single Molecule Detection of RNA. ACS NANO 2023; 17:7250-7256. [PMID: 37052221 PMCID: PMC10108731 DOI: 10.1021/acsnano.2c10143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a "sample-in-answer-out" single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.
Collapse
Affiliation(s)
- Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Xuedong Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Feidi Ye
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jin Zou
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jiuxin Qu
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| |
Collapse
|
6
|
Yang LY, Xu XW, Lin Y, Ye CL, Liu WQ, Liu ZJ, Zhong GX, Xu YF, Lin XH, Chen JY. Nucleic Acid Amplification by Template-Dominated Click Chemistry for Ultrasensitive DNA/RNA Detection on an Electrochemical Readout Platform. Anal Chem 2023; 95:5331-5339. [PMID: 36926822 DOI: 10.1021/acs.analchem.2c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
As an enzyme-free exponential nucleic acid amplification method, the click chemistry-mediated ligation chain reaction (ccLCR) has shown great prospects in the molecular diagnosis. However, the current optics-based ccLCR is challenged by remarkable nonspecific amplification, severely hindering its future application. This study demonstrated that the severe nonspecific amplification was generated probably due to high random collision in the high DNA probe concentration (μM level). To solve this hurdle, a nucleic acid template-dominated ccLCR was constructed using nM-level DNA probes and read on an electrochemical platform (cc-eLCR). Under the optimal conditions, the proposed cc-eLCR detected a low-level nucleic acid target (1 fM) with a single-base resolution. Furthermore, this assay was applied to detect the target of interest in cell extracts with a satisfactory result. The proposed cc-eLCR offers huge possibility for click chemistry-mediated enzyme-free exponential nucleic acid amplification in the application of medical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Liang-Yong Yang
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.,Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiong-Wei Xu
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yan Lin
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Chen-Liu Ye
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Wei-Qiang Liu
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhou-Jie Liu
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Guang-Xian Zhong
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou 350122, China
| | - Yan-Fang Xu
- Department of Nephrology, the Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jin-Yuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
7
|
Li G, Ko CN, Wang Z, Chen F, Wang W, Ma DL, Leung CH. Interference reduction isothermal nucleic acid amplification strategy for COVID-19 variant detection. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 377:133006. [PMID: 36439053 PMCID: PMC9678234 DOI: 10.1016/j.snb.2022.133006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Common reference methods for COVID-19 variant diagnosis include viral sequencing and PCR-based methods. However, sequencing is tedious, expensive, and time-consuming, while PCR-based methods have high risk of insensitive detection in variant-prone regions and are susceptible to potential background signal interference in biological samples. Here, we report a loop-mediated interference reduction isothermal nucleic acid amplification (LM-IR-INA) strategy for highly sensitive single-base mutation detection in viral variants. This strategy exploits the advantages of nicking endonuclease-mediated isothermal amplification, luminescent iridium(III) probes, and time-resolved emission spectroscopy (TRES). Using the LM-IR-INA strategy, we established a luminescence platform for diagnosing COVID-19 D796Y single-base substitution detection with a detection limit of 2.01 × 105 copies/μL in a linear range of 6.01 × 105 to 3.76 × 108 copies/μL and an excellent specificity with a variant/wild-type ratio of significantly less than 0.0625%. The developed TRES-based method was also successfully applied to detect D796Y single-base substitution sequence in complicated biological samples, including throat and blood, and was a superior to steady-state technique. LM-IR-INA was also demonstrated for detecting the single-base substitution D614G as well as the multiple-base mutation H69/V70del without mutual interference, indicating that this approach has the potential to be used as a universal viral variant detection strategy.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zikang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
- Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region of China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region of China
| |
Collapse
|
8
|
Qin G, Zhao C, Yang J, Wang Z, Ren J, Qu X. Unlocking G-Quadruplexes as Targets and Tools against COVID-19. CHINESE J CHEM 2022; 41:CJOC202200486. [PMID: 36711116 PMCID: PMC9874442 DOI: 10.1002/cjoc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/01/2023]
Abstract
The applicability of G-quadruplexes (G4s) as antiviral targets, therapeutic agents and diagnostic tools for coronavirus disease 2019 (COVID-19) is currently being evaluated, which has drawn the extensive attention of the scientific community. During the COVID-19 pandemic, research in this field is rapidly accumulating. In this review, we summarize the latest achievements and breakthroughs in the use of G4s as antiviral targets, therapeutic agents and diagnostic tools for COVID-19, particularly using G4 ligands. Finally, strength and weakness regarding G4s in anti-SARS-CoV-2 field are highlighted for prospective future projects.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
9
|
Corpuz MVA, Buonerba A, Zarra T, Hasan SW, Korshin GV, Belgiorno V, Naddeo V. Advances in virus detection methods for wastewater-based epidemiological applications. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100238. [PMID: 37520925 PMCID: PMC9339091 DOI: 10.1016/j.cscee.2022.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool that has the potential to reveal the extent of an ongoing disease outbreak or to predict an emerging one. Recent studies have shown that SARS-CoV-2 concentration in wastewater may be correlated with the number of COVID-19 cases in the corresponding population. Most of the recent studies and applications of wastewater-based surveillance of SARS-CoV-2 applied the "gold standard" real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) detection method. However, this method also has its limitations. The paper aimed to present recent improvements and applications of the PCR-based methods for SARS-CoV-2 monitoring in wastewater. Furthermore, it aimed to review alternative methods utilized and/or proposed for the detection of the virus in wastewater matrices. From the review, it was found that several studies have investigated the use of reverse-transcription digital polymerase reaction (RT-dPCR), which was generally shown to have a lower limit of detection (LOD) over the RT-qPCR. Aside from this, non-PCR-based and non-RNA based methods have also been explored for the detection of SARS-CoV-2 in wastewater, with detailed attention given to the detection of SARS-CoV-2 proteins. The potential methods for protein detection include mass spectrometry, the use of immunosensors, and nanotechnological applications. In addition, the review of recent studies also revealed two types of emerging methods related to the detection of SARS-CoV-2 in wastewater: i) capsid-integrity assays to infer about the infectivity of SARS-CoV-2 present in wastewater, and ii) alternative methods for detection of SARS-CoV-2 variants of concern (VOCs) in wastewater. The recent studies on proposed methods of SARS-CoV-2 detection in wastewater have considered improving this approach in one or more of the following aspects: rapidity, simplicity, cost, sensitivity, and specificity. However, further studies are needed in order to realize the full application of these methods for WBE in the field.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| |
Collapse
|
10
|
Yan Y, Hu T, Fang Y, Xiang X, Ma C. A fluorescence strategy for the rapid detection of miRNA-21 based on G-quadruplex and cyclic amplification signal. Anal Biochem 2022; 652:114775. [DOI: 10.1016/j.ab.2022.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
|
11
|
Chen F, Li G, Wu C, Wang L, Ko CN, Ma DL, Leung CH. Interference Reduction Biosensing Strategy for Highly Sensitive microRNA Detection. Anal Chem 2022; 94:4513-4521. [PMID: 35234447 DOI: 10.1021/acs.analchem.2c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs are potential biomarkers for human cancers and other diseases due to their roles as post-transcriptional regulators for gene expression. However, the detection of miRNAs by conventional methods such as RT-qPCR, in situ hybridization, northern blot-based platforms, and next-generation sequencing is complicated by short length, low abundance, high sequence homology, and susceptibility to degradation of miRNAs. In this study, we developed a nicking endonuclease-mediated interference reduction rolling circle amplification (NEM-IR-RCA) strategy for the ultrasensitive and highly specific detection of miRNA-21. This method exploits the advantages of the optical properties of long-lived iridium(III) probes, in conjunction with time-resolved emission spectroscopy (TRES) and exponential rolling circle amplification (E-RCA). Under the NEM-IR-RCA-based signal enhancement processes, the limit of detection of miRNA-21 was down to 0.0095 fM with a linear range from 0.05 to 100 fM, which is comparable with the conventional RT-qPCR. Unlike RT-qPCR, the strategy was performed at a lower and constant temperature without heating/cooling cycles and reverse transcription. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specificity. Moreover, the potential application of this method was demonstrated in cancer cells and mouse serum samples, showing good agreement with RT-qPCR results. Apart from miRNA-21 detection, this platform could be also adapted for detecting other miRNAs, such as let-7a and miRNA-22, indicating its excellent potential for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
12
|
Fang X, Li W, Gao T, Ain Zahra QU, Luo Z, Pei R. Rapid screening of aptamers for fluorescent targets by integrated digital PCR and flow cytometry. Talanta 2022; 242:123302. [PMID: 35180537 DOI: 10.1016/j.talanta.2022.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
In this paper, we report the development of a new strategy termed integrated digital PCR-fluorescence activated sorting based SELEX (IFS-SELEX) that enables rapid screening of aptamers against fluorescent targets. Initially, this strategy employs an integrated digital PCR system to amplify each sequence of a preliminarily enriched library, which is obtained by a traditional SELEX method, on the surface of polystyrene beads. Then, the as-prepared beads are incubated with the fluorescent target and then subjected to fluorescence-activated sorting. Since only those sequences with high binding affinity for the target are collected and sequenced, unnecessary analysis of ineligible sequences is avoided by this method, and the aptamer selection process is thereby greatly streamlined. As a proof-of-concept, we applied this strategy for the screening of aptamers against two fluorescent targets, i.e., ciprofloxacin (CFX) and thioflavin T (ThT), and successfully obtained corresponding sequences with low dissociation constants. The binding affinities of aptamers for ThT were well associated with the sorting regions defined in the fluorescence channel of the flow cytometry process. The experimental results demonstrated that the as-designed IFS-SELEX method can serve as a universal platform for rapid, facile, and efficient aptamer selection against various fluorescent targets.
Collapse
Affiliation(s)
- Xiaona Fang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tian Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|