1
|
Zhang Y, Zhang C, Guo W, Chang Y, Liu J, Qin T, Liu D, Zhao L, Yang Z, Zhang Y. Deformation-resistant coaxial fiber photoelectrochemical sensor with vertical anchoring of graphene nanosheets for ultrasensitive glucose detection. Talanta 2025; 293:128048. [PMID: 40168799 DOI: 10.1016/j.talanta.2025.128048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Endowing microelectrode architecture with eminent light-absorbing, analyte-trapping and mechanical robustness is pivotal but challenging for state-of-the-art photoelectrochemical monitoring. Herein, an effective tactic to tackle these issues was proposed for building coaxial fiber-shaped photoelectrochemical sensor, with multiscale vertically oriented channels created by highly ordered arrangement of molecule-recognized graphene (G) nanosheets serving as photoexcitation initiator along the direction perpendicular to the core-layer carbon nanotube (CNT) fiber acting as supporting and conductive matrix. The unique architectural features enabled rapid analyte diffusion and ready light spreading to photoactive and specific recognition sites situated at all channel walls, and meanwhile rendered the device with robust structural integrity, thereby showcasing impressive glucose-assaying capability with rapid response (0.3 s), low detection limit (0.7 μM), wide linear range (4-180 μM), good long-time stability (more than 60 days), superior selectivity and deformation endurance. This work opens up a promising route for processing advanced microelectrode architectures toward highly sensitive and selective photoelectrochemical monitoring even under harsh deformations.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Chunjing Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Wenhao Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yatao Chang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jinpeng Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Tongtong Qin
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dapeng Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Liming Zhao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zhengpeng Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| |
Collapse
|
2
|
Chen B, Yuan X, Tian E, Tan Y, Li L, Huang R. Sea Urchin-like Magnetic Microbeads-Based Electrochemical Biosensor for Highly Sensitive Detection of Metabolites. BIOSENSORS 2025; 15:225. [PMID: 40277539 PMCID: PMC12025299 DOI: 10.3390/bios15040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Analyzing metabolite levels in bodily fluids is essential for disease diagnosis and surveillance. Electrochemical biosensors are ideal for monitoring metabolite levels due to their high sensitivity, rapid response, and low cost. The magnetic microbeads-based electrode functionalization method further promotes the automation development of electrochemical biosensors by eliminating the tedious electrode polishing process. In this study, we presented sea urchin-like magnetic microbeads (SMMBs) and constructed an SMMB-based electrochemical biosensor. The specific morphology of SMMBs provides a larger specific surface area and abundant enzyme binding sites, thereby expanding the active reaction interface on the electrode and improving the sensitivity of the biosensor. Experiment results demonstrated that the SMMB-based electrochemical biosensor achieves μM level detection sensitivity for glucose. Furthermore, by replacing the anchored oxidase on SMMBs, the biosensor can be extended to detect other metabolites, such as cholesterol. In summary, the SMMBs provide a new path to handily construct electrochemical biosensors and hold a great potential for metabolite detection and further development.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572024, China
| | - Xiaosu Yuan
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572024, China
| | - Enze Tian
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572024, China
| | - Yunjie Tan
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572024, China
| | - Le Li
- NHC (National Health Commission of the People’s Republic of China) Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Ru Huang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572024, China
| |
Collapse
|
3
|
Li Y, Hang Y, Gopali R, Xu X, Chen G, Guan X, Bao N, Liu Y. Point-of-care testing device platform for the determination of creatinine on an enzyme@CS/PB/MXene@AuNP-based screen-printed carbon electrode. Mikrochim Acta 2024; 191:534. [PMID: 39136796 DOI: 10.1007/s00604-024-06606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Screen-printed carbon electrodes (SPCE) functionalized with MXene-based three-dimensional nanomaterials are reported for rapid determination of creatinine. Ti3C2TX MXene with in situ reduced AuNPs (MXene@AuNP) were used as a coreactant accelerator for efficient immobilization of enzymes. Creatinine could be oxidized by chitosan-embedded creatinine amidohydrolase, creatine amidinohydrolase, or sarcosine oxidase to generate H2O2, which could be electrochemically detected enhanced by Prussian blue (PB). The enzyme@CS/PB/MXene@AuNP/SPCE detected creatinine within the range 0.03-4.0 mM, with a limit of detection of 0.01 mM, with an average recovery of 96.8-103.7%. This indicates that the proposed biosensor is capable of detecting creatinine in a short amount of time (4 min) within a ± 5% percentage error, in contrast with the standard clinical colorimetric method. With this approach, reproducible and stable electrochemical responses could be achieved for determination of creatinine in serum, urine, or saliva. These results demonstrated its potential for deployment in resource-limited settings for early diagnosis and tracking the progression of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Rusha Gopali
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Xinxin Xu
- Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Guanhua Chen
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Xiaorong Guan
- Jiangsu Aowei Engineering Technology Co., LTD, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Chen H, Huang R, Deng D, Yan X, Luo L. An origami microfluidic paper device based on core-shell Cu@Cu 2S@N-doped carbon hollow nanocubes. Anal Chim Acta 2024; 1316:342828. [PMID: 38969425 DOI: 10.1016/j.aca.2024.342828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUD The global prevalence of diabetes mellitus, a serious chronic disease with fatal consequences for millions annually, is of utmost concern. The development of efficient and simple devices for monitoring glucose levels is of utmost significance in managing diabetes. The advancement of nanotechnology has resulted in the indispensable utilization of advanced nanomaterials in high-performance glucose sensors. Modulating the morphology and intricate composition of transition metals represents a viable approach to exploit their structure/function correlation, thereby achieving optimal electrocatalytic performance of the synthesized catalysts. RESULTS Herein, a sensitive and rapid Cu-encapsulated Cu2S@nitrogen-doped carbon (Cu@Cu2S@N-C) hollow nanocubes-functionalized microfluidic paper-based analytical device (μ-PAD) was fabricated. Through a delicate sacrificial template/interface technique and thermal decomposition, inter-connected hollow networks were formed to boost the active sites, and the carbon shell was coated to protect Cu from being oxidation. For application, the constructed μ-PAD is used for glucose sensing utilizing an origami automated sample pretreatment system enabled by a simple application of strong alkaline solution on wax paper. Under optimal circumstances, the Cu@Cu2S@N-C electrochemical biosensor exhibits broad detection range of 2-7500 μM (R2 = 0.996) with low detection limit of 0.16 μM (S/N = 3) and high sensitivity of 1996 μA mM-1 cm-2. Additionally, the constructed μ-PAD also exhibited excellent selectivity, stability, and reproducibility. SIGNIFICANCE By rationally designing the double-shell hollow nanostructure and introducing Cu-encapsulated inner layer, the synthesized Cu@Cu2S@N-C hollow nanocubes show large specific surface area, short diffusion channels, and high stability. The proposed origami μ-PAD has been successfully applied to serum samples without any additional sample preparation steps for glucose determination, offering a new perspective for early nonenzymatic glucose diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Sciences, Shanghai University, Shanghai, 200444, PR China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xiaoxia Yan
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Pan Y, Zhang J, Guo X, Li Y, Li L, Pan L. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers (Basel) 2024; 16:1597. [PMID: 38891543 PMCID: PMC11174834 DOI: 10.3390/polym16111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Electrochemical sensors play a pivotal role in various fields, such as biomedicine and environmental detection, due to their exceptional sensitivity, selectivity, stability, rapid response time, user-friendly operation, and ease of miniaturization and integration. In addition to the research conducted in the application field, significant focus is placed on the selection and optimization of electrode interface materials for electrochemical sensors. The detection performance of these sensors can be significantly enhanced by modifying the interface of either inorganic metal electrodes or printed electrodes. Among numerous available modification materials, conductive polymers (CPs) possess not only excellent conductivity exhibited by inorganic conductors but also unique three-dimensional structural characteristics inherent to polymers. This distinctive combination allows CPs to increase active sites during the detection process while providing channels for rapid ion transmission and facilitating efficient electron transfer during reaction processes. This review article primarily highlights recent research progress concerning CPs as an ideal choice for modifying electrochemical sensors owing to their remarkable features that make them well-suited for biomedical and environmental applications.
Collapse
Affiliation(s)
- Youheng Pan
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yarou Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lanlan Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Chen J, Tao X, Xu X, Sun L, Huang R, Nilghaz A, Tian J. Making commercial bracelet smarter with a biochemical button module. Biosens Bioelectron 2024; 253:116163. [PMID: 38457865 DOI: 10.1016/j.bios.2024.116163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Despite the rapid development of mobile health based on wearable devices in recent years, lack of access to biochemical detection remains a vital challenge for most commercial wearable devices, which hinders the provision of effective electronic health records (EHRs) for disease control strategies, and further constraining the development of personalized precision medicine. Herein, we propose a strategy to graft biochemical detection function onto commercial bracelet. Different from the conventional development process of designing a completely new wearable biochemical device, we prefer to upgrade existing commercial wearable device to achieve simpler, faster, and more effective research and commercialization processes. An affordable and user-friendly biochemical button module has been designed that enables to integrate sensitive, specific, and rapid biochemical detection function into the idle space on the strap of the bracelet without increasing the size of the main body. This "Smart Bracelet Plus" shows the ability to simultaneously monitor physical and biochemical signals, and will serve as a reliable and systematic personal diagnostics and monitoring platform for providing real-time EHRs for disease control strategies and improving the efficiency of the healthcare system.
Collapse
Affiliation(s)
- Junhao Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510630, China
| | - Xunshun Tao
- Nanjing Ziqishun Biotechnology Co., Ltd., Nanjing, Jiangsu, 211100, China
| | - Xiaohu Xu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510630, China
| | - Linan Sun
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510630, China
| | - Ruquan Huang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510630, China; School of Digital and Communication, Dongguan Polytechnic, Dongguan, 523000, China
| | - Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Fan C, Lai J, Zhou X, Liu Y, Shao Z, Di K, You F, Ding L, Wang K. A bioetching-induced visualized-organic photoelectrochemical transistor dual-signal mode sensor for alkaline phosphatase detection. Chem Commun (Camb) 2024; 60:4581-4584. [PMID: 38576349 DOI: 10.1039/d4cc01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A study of an integrated OPECT biosensor gate and the EC color-changing region on the same chip was carried out, achieving sensitive detection through bioetching-induced signal changes. Enzymatic bioetching enables specific alkaline phosphatase (ALP) detection by catalyzing the production of CdS, which modulates the channel current and generates a visual signal.
Collapse
Affiliation(s)
- Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhiying Shao
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| | - Kezuo Di
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lijun Ding
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Lu Q, Hu Z, Zhang D, Xu F, Xia J. 2D polyaniline derivatives as turn-on fluorescent probe for efficient triethylamine detection at room temperature. Talanta 2023; 265:124868. [PMID: 37393708 DOI: 10.1016/j.talanta.2023.124868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Due to the severe toxicity of triethylamine (TEA), the preparation of chemsensors with high sensitivity, low cost and visualization for TEA detection has been a research hotspot. However, based on the fluorescence turn-on detection of TEA remains rare. In this work, three two-dimensional conjugated polymers (2D CPs) were prepared by chemical oxidation polymerization. These sensors show a quick response and excellent selectivity toward TEA at room temperature. The minimum limit of detection (LOD) for TEA was 3.6 nM in the range of 10 μM ∼ 30 μM. Interestingly, the paper sensor based on P2-HCl can quantitatively detect TEA gas within 20 s, which showed great application potential in fields of environmental monitoring. Besides, Fourier transform infrared spectra (FT-IR), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) data were used to thoroughly interpret the sensing mechanism. This work provided an effective method for the development of 2D fluorescent chemosensors for TEA detection.
Collapse
Affiliation(s)
- Qingyi Lu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zengchi Hu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Dongkui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Feng Xu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
9
|
Fan X, Lv J, Li R, Chen Y, Zhang S, Liu T, Zhou S, Shao X, Wang S, Hu G, Yue Q. Paper test strip for silver ions detection in drinking water samples based on combined fluorometric and colorimetric methods. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Biswas SK, Chatterjee S, Laha S, Pakira V, Som NK, Saha S, Chakraborty S. Instrument-free single-step direct estimation of the plasma glucose level from one drop of blood using smartphone-interfaced analytics on a paper strip. LAB ON A CHIP 2022; 22:4666-4679. [PMID: 36345815 DOI: 10.1039/d2lc00824f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrated an instrument-free miniaturized adaptation of the laboratory gold standard methodology for the direct estimation of plasma glucose from a drop of whole blood using a low-cost single-user-step paper-strip sensor interfaced with a smartphone. Unlike a majority of the existing glucose meters that use whole blood-based indirect sensing technologies, our direct adaptation of the gold-standard laboratory benchmark could eliminate the possibilities of cross interference with other analytes present in the whole blood by facilitating an in situ plasma separation, capillary flow and colorimetric reaction occurring concomitantly, without incurring additional device complexity or embodiment. The test reagents were dispensed in lyophilized form, and the resulting paper strips were found to be stable over three months stored in a normal freezer, rendering easy adaptability commensurate with the constrained supply chains in extreme resource-poor settings. Quantitative results could be arrived at via a completely-automated mobile-app-based image analytics interface developed using dynamic machine learning, obviating manual interpretation. The tests were demonstrated to be of high efficacy, even when executed by minimally trained frontline personnel having no special skill of drawing precise volume of blood, on deployment at under-resourced community centres having no in-built or accessible healthcare infrastructure. Clinical validation using 220 numbers of human blood samples in a double-blinded manner evidenced sensitivity and specificity of 98.11% and 96.7%, respectively, as compared to the results obtained from a laboratory-benchmarked biochemistry analyser, establishing its efficacy for public health and community disease management in resource-limited settings without any quality compromise of the test outcome.
Collapse
Affiliation(s)
- Sujay K Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Subhamoy Chatterjee
- Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Victor Pakira
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nirmal K Som
- B C Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Satadal Saha
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- B C Roy Institute of Medical Science and Research, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- JSV Innovations Pvt. Ltd, Kolkata, 700025, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
11
|
Maduraiveeran G. Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMiniaturized electrochemical sensing systems are employed in day-to-day uses in the several area from public health to scientific applications. A variety of electrochemical sensor and biosensor systems may not be effectively employed in real-world diagnostic laboratories and biomedical industries due to their limitation of portability, cost, analytical period, and need of skilled trainer for operating devices. The design of smart and portable sensors with high sensitivity, good selectivity, rapid measurement, and reusable platforms is the driving strength for sensing glucose, lactate, hydrogen peroxide, nitric oxide, mRNA, etc. The enhancement of sensing abilities of such sensor devices through the incorporation of both novel sensitive nanomaterials and design of sensor strategies are evidenced. Miniaturization, cost and energy efficient, online and quantitative detection and multiple sensing ability are the beneficial of the nanostructured-material-based electrochemical sensor and biosensor systems. Owing to the discriminating catalytic action, solidity and biocompatibility for designing sensing system, nanoscale materials empowered electrochemical detection systems are accomplished of being entrenched into/combined with portable or miniaturized devices for specific applications. In this review, the advance development of portable and smart sensing/biosensing systems derived from nanoscale materials for clinical and biomedical applications is described.
Graphical Abstract
Collapse
|
12
|
Microfluidic microwave biosensor based on biomimetic materials for the quantitative detection of glucose. Sci Rep 2022; 12:15961. [PMID: 36153402 PMCID: PMC9509396 DOI: 10.1038/s41598-022-20285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
This paper presents a microwave microfluidic biosensor for monitoring blood glucose levels. The glucose sensor is a triple ring microstrip patch antenna integrated with a biomimetic microfluidic device capable of measuring a fixed volume of glucose solution. The sensor was utilized to detect 50–500 mg/dL glucose solutions. The interaction of the glucose solution with the electromagnetic field on the patch's surface influences both the resonance frequency and the magnitude of reflection coefficient. The results indicate that the microfluidic device can reduce experimental error and enhance the correlation between glucose concentration, resonant frequency, and reflection coefficient. Finally, the microfluidic sensor had a sensitivity of 0.25 MHz/(mg/dL), a detection limit as low as 7.7 mg/dL, and correlation coefficients of resonance frequency and reflection coefficient with a glucose concentration of 0.996 and 0.984, respectively. The experiment on the sensor's stability verifies the sensor's excellent stability and rapid response (~ 150 ms). Consequently, the device can be used to differentiate the concentration of glucose solutions, as well as to detect blood glucose levels at an early stage.
Collapse
|
13
|
Zhou HY, Zhang H, Peng LJ, Zhang WY, Tian T, Yang FQ. L-cysteine-regulated in situ formation of Prussian blue/Turnbull’s blue nanoparticles as the colorimetric probe for the detection of copper ion. ARAB J CHEM 2022; 15:104000. [DOI: 10.1016/j.arabjc.2022.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155670. [PMID: 35957227 PMCID: PMC9371187 DOI: 10.3390/s22155670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 05/12/2023]
Abstract
As a vital biomarker, glucose plays an important role in multiple physiological and pathological processes. Thus, glucose detection has become an important direction in the electrochemical analysis field. In order to realize more convenient, real-time, comfortable and accurate monitoring, smartphone-based portable, wearable and implantable electrochemical glucose monitoring is progressing rapidly. In this review, we firstly introduce technologies integrated in smartphones and the advantages of these technologies in electrochemical glucose detection. Subsequently, this overview illustrates the advances of smartphone-based portable, wearable and implantable electrochemical glucose monitoring systems in diverse biofluids over the last ten years (2012-2022). Specifically, some interesting and innovative technologies are highlighted. In the last section, after discussing the challenges in this field, we offer some future directions, such as application of advanced nanomaterials, novel power sources, simultaneous detection of multiple markers and a closed-loop system.
Collapse
|
15
|
Chromism-Integrated Sensors and Devices for Visual Indicators. SENSORS 2022; 22:s22114288. [PMID: 35684910 PMCID: PMC9185273 DOI: 10.3390/s22114288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022]
Abstract
The bifunctionality of chromism-integrated sensors and devices has been highlighted because of their reversibility, fast response, and visual indication. For example, one of the representative chromism electrochromic materials exhibits optical modulation under ion insertion/extraction by applying a potential. This operation mechanism can be integrated with various sensors (pressure, strain, biomolecules, gas, etc.) and devices (energy conversion/storage systems) as visual indicators for user-friendly operation. In this review, recent advances in the field of chromism-integrated systems for visual indicators are categorized for various chromism-integrated sensors and devices. This review can provide insights for researchers working on chromism, sensors, or devices. The integrated chromic devices are evaluated in terms of coloration-bleach operation, cycling stability, and coloration efficiency. In addition, the existing challenges and prospects for chromism-integrated sensors and devices are summarized for further research.
Collapse
|
16
|
Shukla SK. Century Impact of Macromolecules for Advances of Sensing Sciences. CHEMISTRY AFRICA 2022. [PMCID: PMC8995417 DOI: 10.1007/s42250-022-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impact of macro molecular theory on the progress of sensing sciences and technology has been presented in the light of materials developments, advances in physical and chemical properties. The chronological advances in the properties of macromolecules have significantly improved the sensing performances towards gases, heavy metals, biomolecules, hydrocarbon, and energetic compounds in terms of unexplored sensing parameters, durability, and working lifetime. In this review article, efforts have been made to correlate the advances in structure and interactivity of macro-molecules with their sensing behavior and working performances. The significant findings on the macromolecules towards advancing the sensing sciences are highlighted with the suitable illustration and schemes to establish it as a potential “microanalytical technique” along with existing challenges.
Collapse
|