1
|
Barmpakos D, Apostolakis A, Jaber F, Aidinis K, Kaltsas G. Recent Advances in Paper-Based Electronics: Emphasis on Field-Effect Transistors and Sensors. BIOSENSORS 2025; 15:324. [PMID: 40422063 DOI: 10.3390/bios15050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Paper-based electronics have emerged as a sustainable, low-cost, and flexible alternative to traditional substrates for electronics, particularly for disposable and wearable applications. This review outlines recent developments in paper-based devices, focusing on sensors and paper-based field-effect transistors (PFETs). Key fabrication techniques such as laser-induced graphene, inkjet printing, and screen printing have enabled the creation of highly sensitive and selective devices on various paper substrates. Material innovations, especially the integration of graphene, carbon-based materials, conductive polymers, and other novel micro- and nano-enabled materials, have significantly enhanced device performance. This review discusses modern applications of paper-based electronics, with a particular emphasis on biosensors, electrochemical and physical sensors, and PFETs designed for flexibility, low power, and high sensitivity. Advances in PFET architectures have further enabled the development of logic gates and memory systems on paper, highlighting the potential for fully integrated circuits. Despite challenges in durability and performance consistency, the field is rapidly evolving, driven by the demand for green electronics and the need for decentralized, point-of-care diagnostic tools. This paper also identifies detection strategies used in paper-based sensors, reviews limitations in the current fabrication methods, and outlines opportunities for the scalable production of multifunctional paper-based systems. This review addresses a critical gap in the literature by linking device-level innovation with real-world sensor applications on paper substrates.
Collapse
Affiliation(s)
- Dimitris Barmpakos
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece
| | - Apostolos Apostolakis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Konstantinos Aidinis
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Electrical and Computer Engineering, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Grigoris Kaltsas
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece
| |
Collapse
|
2
|
Roa S, Kaihara T, Pedano ML, Parsamyan H, Vavassori P. Laser polarization as a critical factor in the SERS-based molecular sensing performance of nano-gapped Au nanowires. NANOSCALE 2024; 16:15280-15297. [PMID: 39078267 DOI: 10.1039/d4nr00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Nowadays, Au dimer-based nanostructures are exhaustively studied due to their outstanding potential as plasmonic nanoantennas for future applications in high-sensitivity molecular sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we analyze nano-gapped Au nanowires (NWs) or Au-NW dimers for designing efficient nanoantennas, reporting an exhaustive study about dimer length and laser polarization orientation effects on their SERS-based molecular sensing performance. Arrays of nanoantennas with gaps of about 22 ± 4 nm, nominal square cross-sections of 60 nm × 60 nm, and different segment lengths from 300 nm up to 1200 nm were fabricated by Au evaporation and subsequent e-beam lithography. The SERS performance was studied by confocal Raman microscopy using a linearly-polarized 633 nm laser. A critical impact of the polarization alignment on the spectral resolution of the studied Raman marker imprint was observed. The results show that the Raman signal is maximized by aligning the polarization orientation with the nanowire long axis, it is reduced by increasing the relative angle, and it is abruptly minimized when both are perpendicular. These observations were consistent with numerical simulations carried out by the FDTD method, which predicts a similar dependence between the orientation of linearly-polarized light and electric-near field amplification in the nano-gap zone. Our results provide an interesting paradigm and relevant insights in determining the role of laser polarization in the Raman signal enhancement in nano-gapped Au nanowires, showing the key role of this measurement condition on the SERS-based molecular sensing efficiency of this kind of nanostructure.
Collapse
Affiliation(s)
- Simón Roa
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
| | - Terunori Kaihara
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
| | - María Laura Pedano
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, C.P. 8400, S. C. de Bariloche, Río Negro, Argentina
| | - Henrik Parsamyan
- Institute of Physics, Yerevan State University, 1 Alex Manoogian, Yerevan 0025, Armenia
| | - Paolo Vavassori
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Liu J, Tang Y, Cheng Y, Huang W, Xiang L. Electrochemical biosensors based on saliva electrolytes for rapid detection and diagnosis. J Mater Chem B 2022; 11:33-54. [PMID: 36484271 DOI: 10.1039/d2tb02031a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, electrochemical biosensors (ECBSs) have shown significant potential for real-time disease diagnosis and in situ physical condition monitoring. As a multi-constituent oral fluid comprising various disease signaling biomarkers, saliva has drawn much attention in the field of point-of-care (POC) testing. In particular, during the outbreak of the COVID-19 pandemic, ECBSs which hold the simplicity of a single-step assay compared with the multi-step assay of traditional testing methods are expected to relieve the human and economic burden caused by the massive and long-term sample testing process. Noteworthily, ECBSs for the detection of SARS-CoV-2 in saliva have already been developed and may replace current testing methods. Furthermore, the detection scope has expanded from routine indices such as sugar and uric acid to abnormal biomarkers for early-stage disease detection and drug level monitoring, which further facilitated the evolution of ECBSs in the last 5 years. This review is divided into several main sections. First, we discussed the latest advancements and representative research on ECBSs for saliva testing. Then, we focused on a novel kind of ECBS, organic electrochemical transistors (OECTs), which hold great advantages of high sensitivity and signal-to-noise ratio and on-site detection. Finally, application of ECBSs with integrated portable platforms in oral cavities, which lead to powerful auxiliary testing means for telemedicine, has also been discussed.
Collapse
Affiliation(s)
- Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China.
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
4
|
Maduraiveeran G. Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMiniaturized electrochemical sensing systems are employed in day-to-day uses in the several area from public health to scientific applications. A variety of electrochemical sensor and biosensor systems may not be effectively employed in real-world diagnostic laboratories and biomedical industries due to their limitation of portability, cost, analytical period, and need of skilled trainer for operating devices. The design of smart and portable sensors with high sensitivity, good selectivity, rapid measurement, and reusable platforms is the driving strength for sensing glucose, lactate, hydrogen peroxide, nitric oxide, mRNA, etc. The enhancement of sensing abilities of such sensor devices through the incorporation of both novel sensitive nanomaterials and design of sensor strategies are evidenced. Miniaturization, cost and energy efficient, online and quantitative detection and multiple sensing ability are the beneficial of the nanostructured-material-based electrochemical sensor and biosensor systems. Owing to the discriminating catalytic action, solidity and biocompatibility for designing sensing system, nanoscale materials empowered electrochemical detection systems are accomplished of being entrenched into/combined with portable or miniaturized devices for specific applications. In this review, the advance development of portable and smart sensing/biosensing systems derived from nanoscale materials for clinical and biomedical applications is described.
Graphical Abstract
Collapse
|
5
|
Li F, Jiang K, Wu Q, Li Z, Chen G. Fabrication of Graphene‐Cuprous Oxide Hybrid Paste Electrodes for Capillary Electrophoretic Measurement of Polyhydroxy Compounds. ELECTROANAL 2022. [DOI: 10.1002/elan.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Farui Li
- Fudan University School of Pharmacy CHINA
| | | | - Qianyu Wu
- Fudan University School of Pharmacy CHINA
| | - Zhenjie Li
- China Tobacco Yunnan Industrial Corporation CHINA
| | | |
Collapse
|