1
|
Sun T, He W, Chen X, Shu X, Liu W, Ouyang G. Nanomaterials-Integrated CRISPR/Cas Systems: Expanding the Toolbox for Optical Detection. ACS Sens 2025; 10:2453-2473. [PMID: 40202271 DOI: 10.1021/acssensors.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Nanomaterials-integrated CRISPR/Cas systems have rapidly emerged as powerful next-generation platforms for optical biosensing. These integrated platforms harness the precision of CRISPR/Cas-mediated nucleic acid detection while leveraging the unique properties of nanomaterials to achieve enhanced sensitivity and expanded analytical capabilities, thereby broadening their diagnostic potential. By incorporating a diverse range of nanomaterials, these systems effectively expand the analytical toolbox for optical detection, offering adaptable solutions tailored to various diagnostic challenges. This review provides a comprehensive overview of the nanomaterials successfully integrated into CRISPR/Cas-based optical sensing systems. It examines multiple optical detection modalities, including fluorescence, electrochemiluminescence, colorimetry, and surface-enhanced Raman spectroscopy, highlighting how nanomaterials facilitate signal amplification, enable multiplexing, and support the development of point-of-care applications. Additionally, practical applications of these integrated systems in critical fields such as healthcare diagnostics and environmental monitoring are showcased. While these platforms offer considerable advantages, several real-world challenges such as the complexity of assay workflows, environmental impact of nanomaterials, cost, and regulatory hurdles must be addressed before widespread implementation can be achieved. By identifying these critical obstacles and proposing strategic solutions, we aim to pave the way for the continued advancement and adoption of nanomaterial-integrated CRISPR/Cas optical biosensing technologies.
Collapse
Affiliation(s)
- Tianying Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenfen He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiangmei Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiaoying Shu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
2
|
Zhu T, Jiang W, Wu Y, Fang R, Deng F, Yang D. Advances in CRISPR/Cas13a-based biosensors for non-coding RNA detection. Talanta 2025; 294:128223. [PMID: 40300474 DOI: 10.1016/j.talanta.2025.128223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/29/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Non-coding RNAs play crucial roles in disease initiation and progression, making them promising biomarkers for early diagnosis and treatment monitoring. Conventional nucleic acid diagnostic methods, including polymerase chain reaction (PCR), next-generation sequencing (NGS), and enzyme-linked immunosorbent assay (ELISA), alongside emerging techniques such as single-molecule fluorescence in situ hybridization (smFISH), nanopore sequencing, and single-cell RNA sequencing (scRNA-seq), face inherent limitations in detecting regulatory non-coding RNAs. These challenges include laborious workflows, prolonged processing times, and technical complexities, hindering their broad applicability in rapid and high-throughput RNA analysis. CRISPR/Cas13a-based biosensors, integrated with various signal transduction systems-such as fluorescence, electrochemistry, colorimetry, surface-enhanced Raman spectroscopy (SERS)-show great promise for real-world diagnostic applications. This review provides a comprehensive overview of the CRISPR/Cas13a-mediated RNA detection mechanism, the development of CRISPR/Cas13a-based biosensors, and their integration with innovative signal detection methods. Additionally, we highlight the progress in portable detection devices, including lateral flow assay strips and smartphone-based platforms. Finally, the review discusses the current challenges and future prospects of CRISPR/Cas13a-based biosensors, particularly in the context of clinical diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Weiwei Jiang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Yingyu Wu
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China
| | - Rong Fang
- Ningbo Clinical and Pathological Diagnosis Center, Ningbo, 315000, China
| | - Fei Deng
- ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney, 2052, Australia
| | - Danting Yang
- Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
3
|
Shen Y, Ou Q, Yang YQ, Zhu WW, Zhao SS, Tan XC, Huang KJ, Yan J. Ag@CDS SERS substrate coupled with lineshape correction algorithm and BP neural network to detect thiram in beverages. Talanta 2025; 284:127233. [PMID: 39591862 DOI: 10.1016/j.talanta.2024.127233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Surface enhanced Raman scattering (SERS) has been proved an effective analytical technique due to its high sensitivity, however, how to identify and extract useful information from raw SERS spectra is still a problem that needs to be resolved. In this work, a composite SERS substrate was prepared by encapsulating Ag nanoparticles within dialdehyde starch (Ag@CDS) to obtain dense "hot spot", and then a novel spectral preprocessing algorithm namely lineshape correction algorithm (LCA) was developed to separate the characteristic peaks of analytes from the original SERS spectra. Based on Ag@CDS and LCA, thiram residues in different beverages were quantitatively detected using back propagation (BP) neural network regression model. It was found that LCA provided an easy-to-use method for improving prediction ability of BP model. The Rp2 of BP model was improved from 0.2384, 0.3647 and 0.5581 to 0.9327, 0.9127 and 0.9251 for the quantitative detection of thiram residue in apple juice, grape juice and milk, respectively, while LCA was used for SERS spectra preprocessing. The optimal model can accurately detect thiram residue with a low limit of detection at 1.0 × 10-7 M, which is far below the maximum residue limit of thiram (2.9 × 10-5 M) regulated by the US Environmental Protection Agency. This study demonstrated that the proposed LCA can be used as a simple and valid spectra-preprocessing method in SERS quantitative detection.
Collapse
Affiliation(s)
- Yu Shen
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Qian Ou
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Ya-Qi Yang
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Wei-Wei Zhu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China.
| | - Song-Song Zhao
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Xue-Cai Tan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
4
|
Fashedemi O, Ozoemena OC, Peteni S, Haruna AB, Shai LJ, Chen A, Rawson F, Cruickshank ME, Grant D, Ola O, Ozoemena KI. Advances in human papillomavirus detection for cervical cancer screening and diagnosis: challenges of conventional methods and opportunities for emergent tools. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1428-1450. [PMID: 39775553 PMCID: PMC11706323 DOI: 10.1039/d4ay01921k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Human papillomavirus (HPV) infection is the main cause of cervical cancer and other cancers such as anogenital and oropharyngeal cancers. The prevention screening and treatment of cervical cancer has remained one of the top priorities of the World Health Organization (WHO). In 2020, the WHO came up with the 90-70-90 strategy aimed at eliminating cervical cancers as a public health problem by the year 2030. One of the key priorities of this strategy is the recommendation for countries to ensure that 70% of their women are screened using a high-performance test by the age of 35, and again by the age of 45. Over the years, several traditional methods (notably, Pap smear and nucleic acid-based techniques) have been used for the detection of cervical cancer. While these methods have significantly reduced the incidence of cervical cancer and death, they still come short of excellence for the total eradication of HPV infection. The challenges include low sensitivity, low specificity, poor reproducibility, the need for high-level specialists, and the high cost of access to the facilities, to mention a few. Interestingly, however, several efforts are being made today to mitigate these challenges. In this review, we discussed the pros and cons of the traditional screening and testing of HPV infections, the efforts being made to improve their performances, and the emergent tools (especially, the electrochemical methods) that promise to revolutionize the screening and testing of HPV infections. The main aim of the review is to provide some novel clues to researchers that would allow for the development of high-performance, affordable, and triage-suitable electrochemical-based diagnostic tools for HPV and cervical cancer.
Collapse
Affiliation(s)
- O Fashedemi
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | | | - Siwaphiwe Peteni
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Aderemi B Haruna
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Leshweni J Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Aicheng Chen
- Department of Chemistry, University of Guelph, Ontario, Canada
| | - Frankie Rawson
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Maggie E Cruickshank
- Aberdeen Centre for Women's Health Research, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - David Grant
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Kenneth I Ozoemena
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
5
|
Li C, Xu T, Hou G, Wang Y, Fu Q. DNA nanotechnology-based strategies for gastric cancer diagnosis and therapy. Mater Today Bio 2025; 30:101459. [PMID: 39866794 PMCID: PMC11762204 DOI: 10.1016/j.mtbio.2025.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC. With the advent of nanotechnology, researchers continue to explore new possibilities for accurate diagnosis and effective treatment. One such breakthrough is the application of DNA nanotechnology. In this paper, the application of exciting DNA nanomaterials in the diagnosis and treatment of GC is discussed in depth. Firstly, the biomarkers related to GC and the diagnostic strategies related to DNA nanotechnology are summarized. Second, the latest research progress of DNA nanomaterials in the GC targeted therapy are summarized. Finally, the challenges and opportunities of DNA nanomaterials in the research and clinical application of GC are prospected.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Tongyang Xu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Guopeng Hou
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Yin Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Qinrui Fu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| |
Collapse
|
6
|
Fu Y, Zhang P, Chen F, Xie Z, Xiao S, Huang Z, Lau CH, Zhu H, Luo J. CRISPR detection of cardiac tumor-associated microRNAs. Mol Biol Rep 2025; 52:114. [PMID: 39797940 DOI: 10.1007/s11033-024-10205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA). Dysregulation of miRNA expressions has been associated with cardiac tumors such as atrial myxoma and angiosarcoma. Diverse CRISPR-Dx systems have been developed to detect miRNA in recent years. These CRISPR-Dx systems are generally classified into four classes, depending on the Cas proteins used (Cas9, Cas12, Cas13, or Cas12f). CRISPR/Cas systems are integrated with various isothermal amplifications to detect low-abundance miRNAs. Amplification-free CRISPR-Dx systems have also been recently developed to detect miRNA directly. Herein, we critically discuss the advances, pitfalls, and future perspectives for these CRISPR-Dx systems in detecting miRNA, focusing on the diagnosis and prognosis of cardiac tumors.
Collapse
Affiliation(s)
- Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Peng Zhang
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Feng Chen
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Ziqiang Xie
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Shihui Xiao
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zhihao Huang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou, 515063, Guangdong, China
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
| |
Collapse
|
7
|
Zhou T, Fu R, Hou J, Yang F, Chai F, Mao Z, Deng A, Li F, Guan Y, Hu H, Li H, Lu Y, Huang G, Zhang S, Xie H. Self-Interference Digital Optofluidic Genotyping for Integrated and Automated Label-Free Pathogen Detection. ACS Sens 2024; 9:6411-6420. [PMID: 39561298 DOI: 10.1021/acssensors.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Pathogen, prevalent in both natural and human environments, cause approximately 4.95 million deaths annually, ranking them among the top contributors to global mortality. Traditional pathogen detection methods, reliant on microscopy and cultivation, are slow and labor-intensive and often produce subjective results. While nucleic acid amplification techniques such as polymerase chain reaction offer genetic accuracy, they necessitate costly laboratory equipment and skilled personnel. Consequently, isothermal amplification methods like recombinase polymerase amplification (RPA) have attracted interest for their rapid and straightforward operations. However, these methods face challenges in specificity and automated sample processing. In this study, we introduce a self-interferometric digital optofluidic platform incorporating asymmetric direct solid-phase RPA for real-time, label-free, and automated pathogen genotyping. By integration of digital microfluidics with a DNA monolayer detection method using hyperspectral interferometry, this platform enables rapid, specific, and sensitive pathogen detection without the need for exogenous labeling or complex procedures. The system demonstrated high sensitivity (10 CFU·mL-1), specificity (differentiating four Candida species), detection efficiency (fully automated within 50 min for Gram-negative bacteria), and throughput (simultaneous detection of four indices). This integrated approach to pathogen quantitation on a single microfluidic chip represents a significant advancement in rapid pathogen diagnostics, providing a practical solution for timely pathogen detection and analysis.
Collapse
Affiliation(s)
- Tianqi Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| | - Jialu Hou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
| | - Fan Yang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fengli Chai
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zeyin Mao
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Anni Deng
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Fenggang Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanfang Guan
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, Henan 450052, China
| | - Hanqi Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| | - Yao Lu
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| | - Guoliang Huang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Shuailong Zhang
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, Henan 450000, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-Optoelectronic Microsystem (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing 400000, China
| |
Collapse
|
8
|
Chen Y, Liu Z, Zhang B, Wu H, Lv X, Zhang Y, Lin Y. Biomedical Utility of Non-Enzymatic DNA Amplification Reaction: From Material Design to Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404641. [PMID: 39152925 DOI: 10.1002/smll.202404641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bowen Zhang
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoying Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Yuwen L, Ni J, Liang J, Liu X, Chen Z, Li X, Lv H, Zhang J, Song C. Portable SERS biosensor based on aptamer-assisted catalytic hairpin assembly signal amplification for ultrasensitive detection of Staphylococcus aureus. Talanta 2024; 278:126565. [PMID: 39018762 DOI: 10.1016/j.talanta.2024.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacteria infections pose a serious threat to public health, and it is urgent to develop facile and accurate detection methods. To meet the important need, a potable and high-sensitive surface enhanced Raman scattering (SERS) biosensor based on aptamer recognition and catalytic hairpin assembly (CHA) signal amplification was proposed for point-of-care detection of Staphylococcus aureus (S. aureus). The SERS biosensor contains three parts: recognition probes, SERS sensing chip, and SERS tags. The feasibility of the strategy was verified by gel electrophoresis, and the one-step test route was optimized. The bacteria SERS biosensor has a good linear relationship ranging from 10 to 107 CFU mL-1 with high sensitivity low to 5 CFU mL-1, and shows excellent specificity, uniformity, and repeatability on S. aureus identification and enumeration, which can distinguish S. aureus from other bacteria. The SERS biosensor shows a good recovery rate (95.73 %-109.65 %) for testing S. aureus spiked in milk, and has good practicability for detecting S. aureus infected mouse wound, which provides a facile and reliable approach for detection of trace bacteria in the real samples.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jing Liang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyu Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
10
|
Zhao Q, Cheng X, Hu S, Zhao M, Chen J, Mu M, Yang Y, Liu H, Hu L, Zhao B, Song W. Bilateral efforts to improve SERS detection efficiency of exosomes by Au/Na 7PMo 11O 39 Combined with Phospholipid Epitope Imprinting. Biosens Bioelectron 2024; 258:116349. [PMID: 38705072 DOI: 10.1016/j.bios.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.
Collapse
Affiliation(s)
- Qingnan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Harbin Medical University, Department Organic Chemistry, College of Pharmacy, Baojian Rd 157, Harbin, 150081, Heilongjiang, PR China
| | - Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Saizhen Hu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Menghan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
11
|
Lou W, Li Y. Research trend of lung cancer epigenetics research: Bibliometric and visual analysis of top-100 cited documents. Heliyon 2024; 10:e35686. [PMID: 39170116 PMCID: PMC11337132 DOI: 10.1016/j.heliyon.2024.e35686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Background Lung cancer is a highly prevalent cancer on a global scale and its oncogenic process is driven by the accumulation of multiple pathological events. Epigenetics has gained significant recognition in recent years as a crucial contributor to the development of lung cancer. Epigenetics include processes such as DNA methylation, histone modification, chromatin remodeling, and RNA modification. These pathways lead to enduring alterations in genetic phenotypes, which are crucial in the advancement and growth of lung cancer. However, the specific mechanisms and roles of epigenetics in lung cancer still need to be further elucidated. Methods We obtained publications from the Web of Science databases and applied a rigorous search method to filter them. Ultimately, we gathered high-quality publications that had received the highest 100 number of citations. The data were processed and visualized by various bibliometric tools. Results The 100 papers had varying numbers of citations, with the lowest being 491 and the most being 6316. On average, each work received 1119 citations. A total of 1056 co-authors were involved in publishing these papers in 59 journals from 185 institutions in 27 countries. The majority of high-caliber research in the subject of lung cancer epigenetics is conducted in advanced countries, with the United States taking the lead in terms of both the quantity of articles produced and their academic influence. The study of DNA methylation has been a longstanding research priority in the discipline. With the development of next-generation sequencing technology in recent years, research related to non-coding RNA has become a research hotspot. Future research directions may focus more on exploring the mechanisms of action of messenger RNA and circular RNA and developing targeted treatment strategies based on non-coding RNA drugs. Conclusion We analyzed 100 top lung cancer and epigenetics documents through various bibliometric analysis tools. This study provides a concise overview of the findings from prior research, anticipates future research directions, and offers potential avenues for additional investigation.
Collapse
Affiliation(s)
- Wangzhouyang Lou
- Chun'an County First People's Hospital, Hangzhou, 311700, People's Republic of China
| | - Yunsheng Li
- Chun'an County First People's Hospital, Hangzhou, 311700, People's Republic of China
| |
Collapse
|
12
|
Peng JM, Liu H, Ying ZM. Rapid one-pot isothermal amplification reassembled of fluorescent RNA aptamer for SARS-CoV-2 detection. Talanta 2024; 276:126264. [PMID: 38761661 DOI: 10.1016/j.talanta.2024.126264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The outbreak of SARS-CoV-2 poses a serious threat to human life and health. A rapid nucleic acid tests can effectively curb the spread of the disease. With the advantages of fluorescent RNA aptamers, low background and high sensitivity. A variety of fluorescent RNA aptamer sensors have been developed for the detection of nucleic acid. Here, we report a hypersensitive detection platform in which SARS-CoV-2 initiates RTF-EXPAR to amplify trigger fragments. This activation leads to the reassembled of the SRB2 fluorescent RNA aptamer, restoring its secondary structure for SR-DN binding and turn-on fluorescence. The platform completes the assay in 30 min and all reactions occur in one tube. The detection limit is as low as 116 aM. Significantly, the platform's quantitative analyses were almost identical to qPCR results in simulated tests of positive samples. In conclusion, the platform is sensitive, accurate and provides a new protocol for point-of-care testing of viruses.
Collapse
Affiliation(s)
- Jia-Min Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Hao Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhan-Ming Ying
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
13
|
Luo X, Jiao Q, Pei S, Zhou S, Zheng Y, Shao W, Xu K, Zhong W. A Photoactivated Self-Assembled Nanoreactor for Inducing Cascade-Amplified Oxidative Stress toward Type I Photodynamic Therapy in Hypoxic Tumors. Adv Healthc Mater 2024:e2401787. [PMID: 39101321 DOI: 10.1002/adhm.202401787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Type I photodynamic therapy (PDT) generates reactive oxygen species (ROS) through oxygen-independent photoreactions, making it a promising method for treating hypoxic tumors. However, the superoxide anion (O2∙-) generated usually exhibits a low oxidation capacity, restricting the antitumor efficacy of PDT in clinical practice. Herein, a photoactivated self-assembled nanoreactor (1-NBS@CeO2) is designed through integration of type I PDT and cerium oxide (CeO2) nanozymes for inducing cascade-amplified oxidative stress in hypoxic tumors. The nanoreactor is constructed though co-assembly of an amphiphilic peptide (1-NBS) and CeO2, giving well-dispersed spherical nanoparticles with enhanced superoxide dismutase (SOD)-like and peroxidase (POD)-like activities. Following light irradiation, 1-NBS@CeO2 undergoes type I photoreactions to generated O2∙-, which is further catalyzed by the nanoreactors, ultimately forming hypertoxic hydroxyl radical (∙OH) through cascade-amplified reactions. The PDT treatment using 1-NBS@CeO2 results in elevation of intracellular ROS and depletion of GSH content in A375 cells, thereby inducing mitochondrial dysfunction and triggering apoptosis and ferroptosis of tumor cells. Importantly, intravenous administration of 1-NBS@CeO2 alongside light irradiation showcases enhances antitumor efficacy and satisfactory biocompatibility in vivo. Together, the self-assembled nanoreactor facilitates cascade-amplified photoreactions for achieving efficacious type I PDT, which holds great promise in developing therapeutic modules towards hypoxic tumors.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Pei
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuyao Zhou
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaxin Zheng
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiyang Shao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
14
|
Gu X, Tang Q, Kang X, Ji H, Shi X, Shi L, Pan A, Zhu Y, Jiang W, Zhang J, Liu J, Wu M, Wu L, Qin Y. A portable CRISPR-Cas12a triggered photothermal biosensor for sensitive and visual detection of Staphylococcus aureus and Listeria monocytogenes. Talanta 2024; 271:125678. [PMID: 38277968 DOI: 10.1016/j.talanta.2024.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
The detection of foodborne pathogens is crucial for ensuring the maintenance of food safety. In the present study, a portable CRISPR-Cas12a triggered photothermal biosensor integrating branch hybrid chain reaction (bHCR) and DNA metallization strategy for sensitive and visual detection of foodborne pathogens was proposed. The sheared probes were utilized to block the locker probes, which enabled preventing the assembly of bHCR in the absence of target bacteria, while target bacteria can activate the cleavage of sheared probes through CRISPR-Cas12a. Therefore, the locker probes functioned as initiating chains, triggering the formation of the branching double-stranded DNA consisting of H1, H2, and H3. The silver particles, which were in situ deposited on the DNA structure, functioned as a signal factor for conducting photothermal detection. Staphylococcus aureus and Listeria monocytogenes were selected as the foodborne pathogens to verify the analytical performance of this CRISPR-Cas12a triggered photothermal sensor platform. The sensor exhibited a sensitive detection with a low detection limit of 1 CFU/mL, while the concentration ranged from 100 to 108 CFU/mL. Furthermore, this method could efficiently detect target bacteria in multiple food samples. The findings demonstrate that this strategy can serve as a valuable reference for the development of a portable platform enabling quantitative analysis, visualization, and highly sensitive detection of foodborne bacteria.
Collapse
Affiliation(s)
- Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; Xinglin College, Nantong University, Qidong, Jiangsu, 226236, China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaoxia Kang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Huoyan Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Xiuying Shi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Linyi Shi
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Anli Pan
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jing Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Mingmin Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
15
|
He W, Liu X, Na J, Bian H, Zhong L, Li G. Application of CRISPR/Cas13a-based biosensors in serum marker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1426-1438. [PMID: 38385279 DOI: 10.1039/d3ay01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The detection of serum markers is important for the early diagnosis and monitoring of diseases, but conventional detection methods have the problem of low specificity or sensitivity. CRISPR/Cas13a-based biosensors have the characteristics of simple detection methods and high sensitivity, which have a certain potential to solve the problems of conventional detection. This paper focuses on the research progress of CRISPR/Cas13a-based biosensors in serum marker detection, introduces the principles and applications of fluorescence, electrochemistry, colorimetric, and other biosensors based on CRISPR/Cas13a in the detection of serum markers, compares and analyzes the differences between the above CRISPR/Cas13a-based biosensors, and looks forward to the future development direction of CRISPR/Cas13a-based biosensors.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Huimin Bian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
| | - Guiyin Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China
| |
Collapse
|
16
|
Duan M, Zhao Y, Liu Y, He Y, Dai R, Chen J, Li X, Jia F. A low-background and wash-free signal amplification F-CRISPR biosensor for sensitive quantitative and visible qualitative detection of Salmonella Typhimurium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168905. [PMID: 38016549 DOI: 10.1016/j.scitotenv.2023.168905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
In traditional CRISPR-based biosensors, the cleavage-induced signal generation is insufficient because only a signals is generated at a CRISPR-induced cleavage. Herein, we developed an improved CRISPR/Cas12a-based biosensor with an enlarged signal generation which integrated the hybridization chain reaction (HCR) and low-background Förster Resonance Energy Transfer (FRET) signal output mode. The HCR with nucleic acid self-assembly capability was used as a signal carrier to load more signaling molecules. To get the best signal amplification, three different fluorescence signal output modes (fluorescence recovery, FRET and low-background FRET) generated by two fluoresceins, FAM and Cy5, were fully investigated and compared. The results indicated that the low-background FRET signal output mode with the strictest signal generation conditions yielded the highest signal-to-noise ratio (S/N) (19.17) and the most obvious fluorescence color change (from red to yellow). In optimal conditions, the proposed biosensor was successfully applied for Salmonella Typhimurium (S. Typhimurium) detection with 6 h (including 4 h for sample pre-treatment) from the initial target processing to the final detection result. The qualitative sensitivity, reliant on color changes, was 103 CFU/mL. The quantitative sensitivity, calculated by the fluorescence value, were 1.62 × 101 CFU/mL, 3.72 × 102 CFU/mL, and 8.71 × 102 CFU/mL in buffer solution, S. Typhimurium-spiked milk samples, and S.Typhimurium-spiked chicken samples, respectively. The excellent detection performance of the proposed biosensor endowed its great application potential in food and environment safety monitoring.
Collapse
Affiliation(s)
- Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
17
|
Li B, Zhai G, Dong Y, Wang L, Ma P. Recent progress on the CRISPR/Cas system in optical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:798-816. [PMID: 38259224 DOI: 10.1039/d3ay02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein systems are adaptive immune systems unique to archaea and bacteria, with the characteristics of targeted recognition and gene editing to resist the invasion of foreign nucleic acids. Biosensors combined with the CRISPR/Cas system and optical detection technology have attracted much attention in medical diagnoses, food safety, agricultural progress, and environmental monitoring owing to their good sensitivity, high selectivity, and fast detection efficiency. In this review, we introduce the mechanism of CRISPR/Cas systems and developments in this area, followed by summarizing recent progress on CRISPR/Cas system-based optical biosensors combined with colorimetric, fluorescence, electrochemiluminescence and surface-enhanced Raman scattering optical techniques in various fields. Finally, we discuss the challenges and future perspectives of CRISPR/Cas systems in optical biosensors.
Collapse
Affiliation(s)
- Bingqian Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Guangyu Zhai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaru Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lan Wang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China.
| | - Peng Ma
- School of Basic Medicine, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
18
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Huang J, Cui K, Li L, Li X, Wang F, Wang Y, Zhang Y, Ge S, Yu J. Paper-Supported Photoelectrochemical Biosensor for Dual-Mode miRNA-106a Assay: Integration of Luminescence-Confined Upconversion-Actuated Fluorescent Resonance Energy Transfer and CRISPR/Cas13a-Powered Cascade DNA Circuits. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16048-16059. [PMID: 37918973 DOI: 10.1021/acs.langmuir.3c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Near-infrared (NIR)-responsive bioassays based on upconversion nanoparticle (UCNP) incorporating high-performance semiconductors have been developed by researchers, but most lack satisfactory ultrasensitivity for exceedingly trace amounts of target. Herein, for the first time, the CRISPR/Cas13a system is combined with cascade DNA circuits, fluorescent resonance energy transfer (FRET) effect, and luminescence-confined UCNPs-bonded CuInS2/ZnO p-n heterostructures-functionalized paper-working electrode to construct dual-signal-on paper-supported NIR-irradiated photoelectrochemical (PEC) (NIR-PEC) and upconversion luminescence (UCL) bioassay for high-sensitive quantification of miRNA-106a (miR-106a). By constructing an ideal FAM-labeled aminating molecular beacon (FAM-H2) model, a relatively good FRET ratio between the UCNP and FAM (≈85.3%) can be achieved. In the existence of miR-106a, the hairpin-structure FAM-H2 was unwound, bringing about the distance increase of UCNP and FAM and the restraint of FRET. Accordingly, both the NIR-PEC signal and the UCL intensity gradually recovered distinctly. Unlike conventional single-mode PEC sensors, with NIR excitation, the designed dual-mode sensing system could implement minimized misdiagnose assay and quantitative miR-106a determination with low detection limits, that is, 76.54 and 51.36 aM for NIR-PEC and UCL detection, respectively. This work not only broadens the horizon of application of the CRISPR/Cas13a strategy toward biosensing but also constructs a new structure of the UCNP-semiconductor in the exploration of efficient NIR-responsive tools and inspires the construction of a no-misdiagnosed and novel biosensor for dual-mode liquid biopsy.
Collapse
Affiliation(s)
- Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Fengyi Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Yangyang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
20
|
Zabelina A, Trelin A, Skvortsova A, Zabelin D, Burtsev V, Miliutina E, Svorcik V, Lyutakov O. Bioinspired superhydrophobic SERS substrates for machine learning assisted miRNA detection in complex biomatrix below femtomolar limit. Anal Chim Acta 2023; 1278:341708. [PMID: 37709451 DOI: 10.1016/j.aca.2023.341708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of "minor" molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10-16 M) on the background of human blood plasma becomes possible.
Collapse
Affiliation(s)
- A Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - A Trelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - A Skvortsova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - D Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - V Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - E Miliutina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - V Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - O Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic.
| |
Collapse
|
21
|
Liu B, Wang F, Chao J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:3313. [PMID: 36992023 PMCID: PMC10051322 DOI: 10.3390/s23063313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.
Collapse
Affiliation(s)
- Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|