1
|
Agudelo OL, Reyes-Loaiza V, Giraldo-Parra L, Rosales-Chilama M, Perdomo S, Gómez MA, Rodriguez JW, Ortega V, Daza Rivera CF, Galindo D, Valencia DP, Quimbaya M, Plata S, Bogdanowicz R, Rosso F, Jaramillo-Botero A. Performance assessment of disposable carbon-based immunosensors for the detection of SARS-CoV-2 infections. Sci Rep 2025; 15:7741. [PMID: 40044778 PMCID: PMC11883031 DOI: 10.1038/s41598-025-92104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
We designed, developed, and clinically tested two rapid antigen-based immunosensors for SARS-CoV-2 detection, enabling diagnosis and viral load quantification for under USD $2. In a first clinical study, a screen-printed disposable carbon-based (SPC) sensor was assessed on prospectively recruited adult participants classified into three study groups: healthy donors (n = 46); SARS-CoV-2-infected symptomatic patients (n = 58); and co-habitants of patients without prior testing (n = 38). Nasopharyngeal aspirates (NA), oropharyngeal swabs (OS), and saliva (SA) samples were obtained from all participants. Performance was measured in terms of clinical sensitivity and specificity against a reference diagnostic RT-qPCR kit and analytical sensitivity (limit of detection, LoD) and specificity using recombinant material in lab tests. A second study was performed using the same sensor design, albeit with laser-induced graphene (LIG) electrodes, using nasopharyngeal swabs (NS) on 224 patient samples obtained at different stages of the pandemic, of which 110 tested negative and 114 positive via RT-qPCR. We find OS was the most informative sample, when compared to NA and SA. The SPC-based sensors had a 93.8% sensitivity and 61.5% specificity with OS samples, while the LIG-based sensors with NS had a lower sensitivity of 68.93%, albeit a significantly higher specificity of 86.17%. We believe specificity values for the SPC sensors were driven by positive results from co-habitants and healthy donors and were affected by the low sensitivity (75.5%) and high LoD (> 20,000 viral copies/mL) of the reference RT-qPCR kit used, and the lower sensitivity of the LIG-based was due to a reduced set of effective antigen-binding sites caused by the non-covalent LIG-mAb ligands used. The immunosensor's LoD to spike protein in phosphate-buffered saline (PBS) for both types of sensors was near 1 fg/mL and showed no cross-reactivity to recombinant structural proteins of Epstein-Barr and Influenza. Performance metrics and time-to-result (5 < 12 min) provide proof-of-principle of the immunosensor's applicability as a low-cost, rapid technology for determining SARS-CoV-2 infections. Changing the working electrode material to LIG, instead of SPC, improved specificity even in the presence of pathogen variants. Discordant results between our two immunosensor versions and RT-qPCR tests are attributed not only to limited antibody effectiveness in the former but also to the quality of RT-qPCR probes used at the height of the pandemic.
Collapse
Affiliation(s)
- Olga L Agudelo
- Centro de Investigaciones Clínicas (CIC), Fundación Valle del Lili, Cra 98 No. 18 - 49, 760032, Cali, Colombia
| | | | - Lina Giraldo-Parra
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad ICESI, Cali, Colombia
| | - Mariana Rosales-Chilama
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad ICESI, Cali, Colombia
| | - Sammy Perdomo
- iOMICAS, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Colombia
| | - María Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad ICESI, Cali, Colombia
| | - John W Rodriguez
- iOMICAS, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Colombia
| | - Viviana Ortega
- iOMICAS, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Colombia
| | - Carlos F Daza Rivera
- Gobernación del Valle del Cauca, Secretaria de Salud Departamental, Laboratorio de Salud Pública Departamental del Valle, Cra. 76 #4-70, Cali, Valle del Cauca, Colombia
| | - Diana Galindo
- Gobernación del Valle del Cauca, Secretaria de Salud Departamental, Laboratorio de Salud Pública Departamental del Valle, Cra. 76 #4-70, Cali, Valle del Cauca, Colombia
| | - Drochss P Valencia
- iOMICAS, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Colombia
| | - Mauricio Quimbaya
- iOMICAS, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Colombia
| | - Simón Plata
- iOMICAS, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Colombia
| | - Robert Bogdanowicz
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza Str.11/12, 80-233, Gdansk, Poland
| | - Fernando Rosso
- Centro de Investigaciones Clínicas (CIC), Fundación Valle del Lili, Cra 98 No. 18 - 49, 760032, Cali, Colombia
- Universidad ICESI, Cali, Colombia
| | - Andres Jaramillo-Botero
- iOMICAS, Pontificia Universidad Javeriana, Calle 18 # 118-250, Cali, Colombia.
- Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
F Silva WR, P Monteiro LC, Senra RL, D de Araújo EN, R R Cunha RO, de O Mendes TA, S Mendes JB. A biosensor based on magnetoelastic waves for detection of antibodies in human plasma for COVID-19 serodiagnosis. Biosens Bioelectron 2024; 261:116456. [PMID: 38878694 DOI: 10.1016/j.bios.2024.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
This study proposes a new efficient wireless biosensor based on magnetoelastic waves for antibody detection in human plasma, aiming at the serological diagnosis of COVID-19. The biosensor underwent functionalization with the N antigen - nucleocapsid phosphoprotein of the SARS-CoV-2 virus. Validation analyses by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting (WB), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis and micro-Raman spectroscopy confirmed the selectivity and effective surface functionalization of the biosensor. The research successfully obtained, expressed and purified the recombinant antigen, while plasma samples from COVID-19 positive and negative patients were applied to test the performance of the biosensor. A performance comparison with the enzyme-linked immunosorbent assays (ELISA) method revealed equivalent diagnostic capacity. These results indicate the robustness of the biosensor in reliably differentiating between positive and negative samples, highlighting its potential as an efficient and low-cost tool for the serological diagnosis of COVID-19. In addition to being fast to execute and having the potential for automation in large-scale diagnostic studies, the biosensor fills a significant gap in existing SARS-CoV-2 detection approaches.
Collapse
Affiliation(s)
- Wenderson R F Silva
- Departamento de Física, Universidade Federal de Viçosa, 36570-90, Viçosa, Minas Gerais, Brazil.
| | - Larissa C P Monteiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Renato Lima Senra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Eduardo N D de Araújo
- Departamento de Física, Universidade Federal de Viçosa, 36570-90, Viçosa, Minas Gerais, Brazil
| | - Rafael O R R Cunha
- Departamento de Física, Universidade Federal de Viçosa, 36570-90, Viçosa, Minas Gerais, Brazil
| | - Tiago A de O Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Joaquim B S Mendes
- Departamento de Física, Universidade Federal de Viçosa, 36570-90, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
Shahbazi E, Moradi A, Mollasalehi H, Mohebbi SR. Unravelling the diagnostic methodologies for SARS-CoV-2; the Indispensable need for developing point-of-care testing. Talanta 2024; 275:126139. [PMID: 38696900 DOI: 10.1016/j.talanta.2024.126139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic that continues to be a global menace and since its emergence in the late 2019, SARS-CoV-2 has been vigorously spreading throughout the globe putting the whole world into a multidimensional calamity. The suitable diagnosis strategies are on the front line of the battle against preventing the spread of infections. Since the clinical manifestation of COVID-19 is shared between various diseases, detection of the unique impacts of the pathogen on the host along with the diagnosis of the virus itself should be addressed. Employing the most suitable approaches to specifically, sensitively and effectively recognize the infected cases may be a real game changer in controlling the outbreak and the crisis management. In that matter, point-of-care assays (POC) appears to be the potential option, due to sensitivity, specificity, affordable, and availability. Here we brief the most recent findings about the virus, its variants, and the conventional methods that have been used for its detection, along with the POC strategies that have been applied to the virus diagnosis and the developing technologies which can accelerate the diagnosis procedure yet maintain its efficiency.
Collapse
Affiliation(s)
- Erfan Shahbazi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asma Moradi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Mollasalehi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhang Y, Liu J, Lo TW, Kim Y, Lucien F, Dong H, Liu Y. A digital microfluidic device integrated with electrochemical sensor and 3D matrix for detecting soluble PD-L1. BIOSENSORS & BIOELECTRONICS: X 2024; 19:100490. [PMID: 39091597 PMCID: PMC11290324 DOI: 10.1016/j.biosx.2024.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10-30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients' immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jing Liu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ting-Wen Lo
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yohan Kim
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yuguang Liu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
5
|
Valerio TL, Anastácio R, da Silva SS, de Oliveira CC, Vidotti M. An overview of electrochemical biosensors used for COVID-19 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2164-2176. [PMID: 38536084 DOI: 10.1039/d3ay02042h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This short review presents the latest advances in the field of electrochemical biosensors, focusing particularly on impedimetric biosensors for the direct measurement of analytes. As a source of study we have chosen to describe these advances in the latest global health crisis originated from the COVID-19 pandemic, initiated by the SARS-CoV-2 virus. In this period, the necessity for swift and precise detection methods has grown rapidly due to an imminent need for the development of an analytical method to identify and isolate infected patients as an attempt to control the spreading of the disease. Traditional approaches such as the enzyme-linked immunosorbent assay (ELISA), were extensively used during the SARS-CoV-2 pandemic, but their drawbacks, including slow response time, became evident. In this context, the potential of electrochemical biosensors as an alternative for COVID-19 detection was emphasized. These biosensors merge electrochemical technology with bioreceptors, offering benefits such as rapidity, accuracy, portability, and real-time result provision. Additionally, we present instances of electrochemical biosensors modified with conductive polymers, eliminating the necessity for an electrochemical probe. The adaptability of the developed materials and devices facilitated the prompt production of electrochemical biosensors during the pandemic, creating opportunities for broader applications in infectious disease diagnosis.
Collapse
Affiliation(s)
- Tatiana Lima Valerio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Raquel Anastácio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Stella Schuster da Silva
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Blasques RV, Stefano JS, da Silva VAOP, Brazaca LC, Janegitz BC. Reusable graphite-based electrochemical sensors for L-dopa and dopamine detection. Mikrochim Acta 2024; 191:197. [PMID: 38483622 DOI: 10.1007/s00604-024-06271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
A fully reusable electrochemical device is proposed for the first time made from laser cutting and a homemade conductive ink composed of carbon and nail polish. As a sensor substrate, we applied polymethyl methacrylate, which allows the surface to be renewed by simply removing and reapplying a new layer of ink. In addition to the ease of renewing the sensor's conductive surface, the design of the device has allowed for the integration of different forms of analysis. The determination of L-Dopa was performed using DPV, which presented a linear response range between 5.0 and 1000.0 μmol L-1, and a LOD of 0.11 μmol L-1. For dopamine, a flow injection analysis system was employed, and using the amperometric technique measurements were performed with a linear ranging from 2.0 to 100.0 μmol L-1 and a LOD of 0.26 μmol L-1. To demonstrate its applicability, the device was used in the quantification of analytes in pharmaceutical drug and synthetic urine samples.
Collapse
Affiliation(s)
- Rodrigo Vieira Blasques
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras, 13600-970, Brazil
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos, São Paulo, Sorocaba, 18052-780, Brazil
| | - Jéssica Santos Stefano
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras, 13600-970, Brazil
| | | | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.
| | - Bruno Campos Janegitz
- Laboratory of Sensors, Nanomedicine and Nanostructured Materials, Federal University of São Carlos, Araras, 13600-970, Brazil.
| |
Collapse
|
7
|
du Plooy J, Kock B, Jahed N, Iwuoha E, Pokpas K. Carbon Nanostructured Immunosensing of Anti-SARS-CoV-2 S-Protein Antibodies. Molecules 2023; 28:8022. [PMID: 38138513 PMCID: PMC10745885 DOI: 10.3390/molecules28248022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
8
|
Yin W, Hu J, Chen F, Zhu L, Ma Y, Wang N, Wei H, Yang H, Chou SH, He J. Combining hybrid nanoflowers with hybridization chain reaction for highly sensitive detection of SARS-CoV-2 nucleocapsid protein. Anal Chim Acta 2023; 1279:341838. [PMID: 37827653 DOI: 10.1016/j.aca.2023.341838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND COVID-19 (coronavirus disease 2019) pandemic has had enormous social and economic impacts so far. The nucleocapsid protein (N protein) is highly conserved and is a key antigenic marker for the diagnosis of early SARS-CoV-2 infection. RESULTS In this study, the N protein was first captured by an aptamer (Aptamer 58) coupled to magnetic beads (MBs), which in turn were bound to another DNA sequence containing the aptamer (Aptamer 48-Initiator). After adding 5'-biotinylated hairpin DNA Amplifier 1 and Amplifier 2 with cohesive ends for complementary hybridization, the Initiator in the Aptamer 48-Initiator began to trigger the hybridization chain reaction (HCR), generating multiple biotin-labeled DNA concatamers. When incubated with synthetic streptavidin-invertase-Ca3(PO4)2 hybrid nanoflower (SICa), DNA concatamers could specifically bind to SICa through biotin-streptavidin interaction with high affinity. After adding sucrose, invertase in SICa hydrolyzed sucrose to glucose, whose concentration could be directly read with a portable glucometer, and its concentration was positively correlated with the amount of captured N protein. The method is highly sensitive with a detection limit as low as 1 pg/mL. SIGNIFICANCE We believe this study provided a practical solution for the early detection of SARS-CoV-2 infection, and offered a new method for detecting other viruses through different target proteins.
Collapse
Affiliation(s)
- Wen Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ji Hu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Chen
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nuo Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430000, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Sun J, Yang ZD, Xie X, Li L, Zeng HS, Gong B, Xu JQ, Wu JH, Qu BB, Song GW. Clinical application of SARS-CoV-2 antibody detection and monoclonal antibody therapies against COVID-19. World J Clin Cases 2023; 11:2168-2180. [PMID: 37122515 PMCID: PMC10131020 DOI: 10.12998/wjcc.v11.i10.2168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to investigate the clinical application of severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) specific antibody detection and anti-SARS-CoV-2 specific monoclonal antibodies (mAbs) in the treatment of coronavirus infectious disease 2019 (COVID-19). The dynamic changes of SARS-CoV-2 specific antibodies during COVID-19 were studied. Immunoglobulin M (IgM) appeared earlier and lasted for a short time, while immunoglobulin G (IgG) appeared later and lasted longer. IgM tests can be used for early diagnosis of COVID-19, and IgG tests can be used for late diagnosis of COVID-19 and identification of asymptomatic infected persons. The combination of antibody testing and nucleic acid testing, which complement each other, can improve the diagnosis rate of COVID-19. Monoclonal anti-SARS-CoV-2 specific antibodies can be used to treat hospitalized severe and critically ill patients and non-hospitalized mild to moderate COVID-19 patients. COVID-19 convalescent plasma, highly concentrated immunoglobulin, and anti-SARS-CoV-2 specific mAbs are examples of anti-SARS-CoV-2 antibody products. Due to the continuous emergence of mutated strains of the novel coronavirus, especially omicron, its immune escape ability and infectivity are enhanced, making the effects of authorized products reduced or invalid. Therefore, the optimal application of anti-SARS-CoV-2 antibody products (especially anti-SARS-CoV-2 specific mAbs) is more effective in the treatment of COVID-19 and more conducive to patient recovery.
Collapse
Affiliation(s)
- Jin Sun
- Medical Innovation Research Office, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Zhen-Dong Yang
- Department of Respiratory, Beijing Jindu Children Hospital, Beijing 102208, China
- Innovative Medicine Working Committee of the Chinese Society of Water Resources and Electric Power Medical Science and Technology, Beijing 100053, China
- Department of Pediatrics, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Xiong Xie
- Department of Pediatrics, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Li Li
- Department of Intensive Care, First Clinical Medical College of Three Gorges University, Yichang 443000, Hubei Province, China
| | - Hua-Song Zeng
- Department of Allergy Immunology and Rheumatology, Guangzhou Children's Hospital, Women's and Children's Medical Center Affiliated with Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Bo Gong
- Central Laboratory, Shanghai Changning District Maternal and Child Health, Maternal and Child Health Hospital Affiliated with Shanghai East China Normal University, Shanghai 210000, China
| | - Jian-Qiang Xu
- Department of Respiratory and Critical Care Medicine, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Ji-Hong Wu
- School of Clinical Medicine, Beijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua University, Beijing 102218, China
| | - Bei-Bei Qu
- Medical Innovation Research Office, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Guo-Wei Song
- Department of Emergency, Children's Hospital Affiliated with Beijing Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
10
|
Cetinkaya A, Kaya SI, Ozkan SA. A Comprehensive Overview of Sensors Applications for the Diagnosis of SARS-CoV-2 and of Drugs Used in its Treatment. Crit Rev Anal Chem 2023; 54:2517-2537. [PMID: 36877165 DOI: 10.1080/10408347.2023.2186693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During the COVID-19 process, determination-based analytical chemistry studies have had a major place at every stage. Many analytical techniques have been used in both diagnostic studies and drug analysis. Among these, electrochemical sensors are frequently preferred due to their high sensitivity, selectivity, short analysis time, reliability, ease of sample preparation, and low use of organic solvents. For the determination of drugs used in the SARS-CoV-2, such as favipiravir, molnupiravir, ribavirin, etc., electrochemical (nano)sensors are widely used in both pharmaceutical and biological samples. Diagnosis is the most critical step in the management of the disease, and electrochemical sensor tools are widely preferred for this purpose. Diagnostic electrochemical sensor tools can be biosensor-, nano biosensor-, or MIP-based sensors and utilize a wide variety of analytes such as viral proteins, viral RNA, antibodies, etc. This review overviews the sensor applications in SARS-CoV-2 in terms of diagnosis and determination of drugs by evaluating the most recent studies in the literature. In this way, it is aimed to compile the developments so far by shedding light on the most recent studies and giving ideas to researchers for future studies.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|