1
|
He J, Hao F, Song S, Zhang J, Zhou H, Zhang J, Li Y. METTL Family in Healthy and Disease. MOLECULAR BIOMEDICINE 2024; 5:33. [PMID: 39155349 PMCID: PMC11330956 DOI: 10.1186/s43556-024-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Transcription, RNA splicing, RNA translation, and post-translational protein modification are fundamental processes of gene expression. Epigenetic modifications, such as DNA methylation, RNA modifications, and protein modifications, play a crucial role in regulating gene expression. The methyltransferase-like protein (METTL) family, a constituent of the 7-β-strand (7BS) methyltransferase subfamily, is broadly distributed across the cell nucleus, cytoplasm, and mitochondria. Members of the METTL family, through their S-adenosyl methionine (SAM) binding domain, can transfer methyl groups to DNA, RNA, or proteins, thereby impacting processes such as DNA replication, transcription, and mRNA translation, to participate in the maintenance of normal function or promote disease development. This review primarily examines the involvement of the METTL family in normal cell differentiation, the maintenance of mitochondrial function, and its association with tumor formation, the nervous system, and cardiovascular diseases. Notably, the METTL family is intricately linked to cellular translation, particularly in its regulation of translation factors. Members represent important molecules in disease development processes and are associated with patient immunity and tolerance to radiotherapy and chemotherapy. Moreover, future research directions could include the development of drugs or antibodies targeting its structural domains, and utilizing nanomaterials to carry miRNA corresponding to METTL family mRNA. Additionally, the precise mechanisms underlying the interactions between the METTL family and cellular translation factors remain to be clarified.
Collapse
Affiliation(s)
- Jiejie He
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Fengchen Hao
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Shiqi Song
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Junli Zhang
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Hongyu Zhou
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Jun Zhang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| | - Yan Li
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| |
Collapse
|
2
|
Ma T, Zhang Q, Zhang S, Yue D, Wang F, Ren Y, Zhang H, Wang Y, Wu Y, Liu LE, Yu F. Research progress of human key DNA and RNA methylation-related enzymes assay. Talanta 2024; 273:125872. [PMID: 38471421 DOI: 10.1016/j.talanta.2024.125872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Gene methylation-related enzymes (GMREs) are disfunction and aberrantly expressed in a variety of cancers, such as lung, gastric, and pancreatic cancers and have important implications for human health. Therefore,it is critical for early diagnosis and therapy of tumor to develop strategies that allow rapid and sensitive quantitative and qualitative detection of GMREs. With the development of modern analytical techniques and the application of various biosensors, there are numerous methods have been developed for analysis of GMREs. Therefore, this paper provides a systematic review of the strategies for level and activity assay of various GMREs including methyltransferases and demethylase. The detection methods mainly involve immunohistochemistry, colorimetry, fluorescence, chemiluminescence, electrochemistry, etc. Then, this review also addresses the coordinated role of various detection probes, novel nanomaterials, and signal amplification methods. The aim is to highlight potential challenges in the present field, to expand the analytical application of GMREs detection strategies, and to meet the urgent need for future disease diagnosis and intervention.
Collapse
Affiliation(s)
- Tiantian Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Qiongwen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Yue
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fanting Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yujie Ren
- School of Information Management, Zhengzhou University, Zhengzhou 450001, China
| | - Hengmiao Zhang
- School of Information Management, Zhengzhou University, Zhengzhou 450001, China
| | - Yinuo Wang
- Zhengzhou Foreign Language School, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Zhao NN, Wang Q, Yang DM, Li DL, Han Y, Zhao S, Zou X, Zhang CY. Elongation and Ligation-Mediated Differential Coding for Label-Free and Locus-Specific Analysis of 8-Oxo-7,8-dihydroguanine in DNA. Anal Chem 2024; 96:5323-5330. [PMID: 38501982 DOI: 10.1021/acs.analchem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Dong-Ming Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Wu Y, Liang R, Chen W, Wang C, Xing D. The development of biosensors for alkaline phosphatase activity detection based on a phosphorylated DNA probe. Talanta 2024; 270:125622. [PMID: 38215586 DOI: 10.1016/j.talanta.2024.125622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Alkaline phosphatase (ALP) is a zinc-containing metalloprotein that shows very great significance in clinical diagnosis, which can catalyze the hydrolysis of phosphorylated species. ALP has the potential to serve as a valuable biomarker for detecting liver dysfunction and bone diseases. On the other hand, ALP is an efficient biocatalyst to amplify detection signals in the enzyme-linked assay. It has always been a major research focus to develop novel biosensors that can detect ALP activity with high selectivity and sensitivity. There have been numerous reports on the development of biosensors to determine ALP activity using a phosphorylated DNA probe. Among them, various beneficial strategies, such as λ exonuclease-mediated cleavage reaction, terminal deoxynucleotidyl transferase-triggered DNA polymerization, and Klenow fragment polymerase-catalyzed elongation, are employed to generate amplified and more intuitive signal. This review discusses and summarizes the development and advances of biosensors for ALP activity detection that use a well-designed phosphorylated DNA probe, aiming to provide some guidelines for the design of more sophisticated sensing strategies that exhibit improved sensitivity, selectivity, and adaptability in detecting ALP activity.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Liu XW, Zhao NN, Yuan HM, Li DL, Liu M, Zhang CY. Demethylation-activated light-up dual-color RNA aptamersensor for label-free detection of multiple demethylases in lung tissues. Biosens Bioelectron 2024; 247:115966. [PMID: 38147719 DOI: 10.1016/j.bios.2023.115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Methylation is one of the most prevalent epigenetic modifications in natural organisms, and the processes of methylation and demethylation are closely associated with cell growth, differentiation, gene transcription and expression. Abnormal methylation may lead to various human diseases including cancers. Simultaneous analysis of multiple DNA demethylases remains a huge challenge due to the requirement of diverse substrate probes and scarcity of proper signal transduction strategies. Herein, we propose a sensitive and label-free method for simultaneous monitoring of multiple DNA demethylases on the basis of demethylation-activated light-up dual-color RNA aptamers. The presence of targets AlkB homologue-3 (ALKBH3) and fat mass and obesity-associated enzyme (FTO) erases the methyl group in DNA substrate probes, activating the ligation-mediate bidirectional transcription amplification reaction to produce enormous Spinach and Mango aptamers. The resulting RNA aptamers (i.e., Spinach and Mango aptamers) can bind with their cognate nonfluorescent fluorogens (DFHBI and TO1-biotin) to significantly improve the fluorescence signals. This aptamersensor shows high specificity and sensitivity with a limit of detection (LOD) of 8.50 × 10-14 M for ALKBH3 and 6.80 × 10-14 M for FTO, and it can apply to screen DNA demethylase inhibitors, evaluate DNA demethylase kinetic parameters, and simultaneously measure multiple endogenous DNA demethylases in a single cell. Importantly, this aptamersensor can accurately discriminate the expressions of ALKBH3 and FTO between healthy tissues and non-small cell lung cancer (NSCLC) patient tissues, offering a powerful platform for clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Xiao-Wen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Hui-Min Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Lai A, Sun J, Dai Z, Guo L, Tao D, Li H, Chen B, Zhou R. Unraveling IGFBP3-mediated m6A modification in fracture healing. Pathol Res Pract 2024; 255:155220. [PMID: 38432050 DOI: 10.1016/j.prp.2024.155220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND This study investigates the role of IGFBP3-mediated m6A modification in regulating the miR-23a-3p/SMAD5 axis and its impact on fracture healing, aiming to provide insights into potential therapeutic targets. METHODS Utilizing fracture-related datasets, we identified m6A modification-related mRNA and predicted miR-23a-3p as a regulator of SMAD5. We established a mouse fracture healing model and conducted experiments, including Micro-CT, RT-qPCR, Alizarin Red staining, and Alkaline phosphatase (ALP) staining, to assess gene expression and osteogenic differentiation. RESULTS IGFBP3 emerged as a crucial player in fracture healing, stabilizing miR-23a-3p through m6A modification, leading to SMAD5 downregulation. This, in turn, inhibited osteogenic differentiation and delayed fracture healing. Inhibition of IGFBP3 partially reversed through SMAD5 inhibition, restoring osteogenic differentiation and fracture healing in vivo. CONCLUSION The IGFBP3/miR-23a-3p/SMAD5 axis plays a pivotal role in fracture healing, highlighting the relevance of m6A modification. IGFBP3's role in stabilizing miR-23a-3p expression through m6A modification offers a potential therapeutic target for enhancing fracture healing outcomes.
Collapse
Affiliation(s)
- Aining Lai
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Junjian Sun
- Section Ⅴ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 31300, PR China
| | - Zhiyuan Dai
- Thoracic surgey, the 72nd Army Hospital of PLA, Huzhou 313000, PR China
| | - Long Guo
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Degang Tao
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Haitang Li
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China
| | - Bin Chen
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China.
| | - Rong Zhou
- Section Ⅱ, Department of Orthopedics, the 72nd Army Hospital of PLA, Huzhou 313000, P. R. China.
| |
Collapse
|
7
|
Liu WJ, Song R, Zou XR, Li DL, Xu Q, Zhang CY. Enzymatic DNA repairing amplification-powered construction of an Au nanoparticle-based nanosensor for single-molecule monitoring of cytosine deaminase activity in cancer cells. Anal Chim Acta 2023; 1281:341895. [PMID: 38783732 DOI: 10.1016/j.aca.2023.341895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 05/25/2024]
Abstract
APOBEC3A (A3A) is a cytidine deaminase with critical roles in molecular diagnostics. Herein, we demonstrate the enzymatic DNA repairing amplification-powered construction of an Au nanoparticle-based nanosensor for single-molecule monitoring of A3A activity in cancer cells. Target A3A can convert cytosine (C) in substrate probe to uracil (U), and then the template binds with substrate probe to form a dsDNA containing U/A base pairs. Uracil DNA glycosylase (UDG) excises the U base to produce an apurinic/apyrimidinic (AP) site that can be cleaved by apurinic/apyrimidic endonuclease 1 (APE1) to obtain the substrate fragment with 3'-OH end. Subsequently, the substrate fragment initiates cyclic enzymatic repairing amplification (ERA), releasing trigger-1 and trigger-2. The resultant trigger-1 can act as the primer to induce multiple cycles of cyclic ERA, producing numerous trigger-1 and trigger-2. The hybridization of trigger-2 with signal probe forms the dsDNA duplexes with an AP site, inducing the cyclic cleavage of signal probes by APE1 to release abundant Cy5 molecules from the AuNPs. Released Cy5 molecules can be easily quantified by single-molecule imaging. This nanosensor allows for specific and sensitive detection of A3A activity with a detection limit of 0.855 aM, and it can further measure kinetic parameters, screen inhibitors, and quantify endogenous A3A activity at the single-cell level, with prospect application in disease diagnostics and therapy.
Collapse
Affiliation(s)
- Wen-Jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Rui Song
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Xiao-Ran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
8
|
Liu MH, Yu WT, Zhao NN, Qiu JG, Jiang BH, Zhang Y, Zhang CY. Development of a N 6-methyladenosine-directed single quantum dot-based biosensor for sensitive detection of METTL3/14 complex activity in breast cancer tissues. Anal Chim Acta 2023; 1279:341796. [PMID: 37827689 DOI: 10.1016/j.aca.2023.341796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The METTL3/14 complex is an important RNA N6-Methyladenosine (m6A) methyltransferase in organisms, and the abnormal METTL3/14 complex activity is associated with the pathogenesis and various cancers. Sensitive detection of METTL3/14 complex is essential to tumor pathogenesis study, cancer diagnosis, and anti-cancer drug discovery. However, traditional methods for METTL3/14 complex assay suffer from poor specificity, costly antibodies, unstable RNA substrates, and low sensitivity. Herein, we construct a single quantum dot (QD)-based förster resonance energy transfer (FRET) biosensor for sensitive detection of METTL3/14 complex activity. In the presence of METTL3/14 complex, it catalyzes the methylation of adenine in the substrate probe, leading to the formation of m6A that protects the substrate probes from MazF-mediated cleavage. The hybridization of methylated DNA substrate with biotinylated capture probe initiates polymerization reaction to obtain a biotinylated double-stranded DNA (dsDNA) with the incorporation of numerous Cy5 fluorophores. Subsequently, the Cy5-incorporated dsDNA can self-assembly onto the 605QD surface to form the 605QD-dsDNA-Cy5 nanostructure, causing FRET between 605QD donor and Cy5 acceptor. This biosensor has excellent sensitivity with a limit of detection (LOD) of 3.11 × 10-17 M, and it can measure the METTL3/14 complex activity in a single cell. Moreover, this biosensor can be used to evaluate the METTL3/14 complex kinetic parameters and screen potential inhibitors. Furthermore, it can differentiate the METTL3/14 complex expression in healthy human tissues and breast cancer patient tissues, providing a powerful tool for cancer pathogenesis study, clinical diagnosis, prognosis monitoring, and drug discovery.
Collapse
Affiliation(s)
- Ming-Hao Liu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Wan-Tong Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|