1
|
Augustine S, Venkadesh A, Kaushal S, Lee E, Ajaj M, Lee NE. Point-of-Care Testing: The Convergence of Innovation and Accessibility in Diagnostics. Anal Chem 2025; 97:9569-9599. [PMID: 40314609 DOI: 10.1021/acs.analchem.4c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Over the years, the evolution of point-of-care testing (POCT) has been driven by technological advancements in materials, design, and artificial intelligence, as well as breakthrough developments in wearable technologies. These innovations are shifting diagnostics from centralized medical facilities to individual homes, meeting the growing demand for personalized healthcare. This Review explores recent advancements in binding-based assay technologies over the past two years, focusing on platforms such as traditional flow assays (lateral and vertical flow), fully integrated microfluidic devices, and wearable biosensor-integrated systems for POCT applications. It emphasizes the role of optical and electrochemical detection methods, which are essential for ensuring the sensitivity, specificity, and reliability required in a POCT. POCT technologies offer advantages including ease of use, high diagnostic accuracy, rapid clinical assessment, and cost-effectiveness in manufacturing and consumables. Additionally, the Review highlights current challenges and future perspectives for delivering personalized healthcare through portable and wearable POCT systems that operate on a sample-in, result-out basis.
Collapse
Affiliation(s)
- Shine Augustine
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Anandharaman Venkadesh
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sandeep Kaushal
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eunghyuk Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Malak Ajaj
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Nae-Eung Lee
- Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Institute of Quantum Biophysics (IQB) and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
2
|
Li P, Galek P, Grothe J, Kaskel S. Carbon-based iontronics - current state and future perspectives. Chem Sci 2025; 16:7130-7154. [PMID: 40201167 PMCID: PMC11974446 DOI: 10.1039/d4sc06817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Over the past few decades, carbon materials, including fullerenes, carbon nanotubes, graphene, and porous carbons, have achieved tremendous success in the fields of energy, environment, medicine, and beyond, through their development and application. Due to their unique physical and chemical characteristics for enabling simultaneous interaction with ions and transport of electrons, carbon materials have been attracting increasing attention in the emerging field of iontronics in recent years. In this review, we first summarize the recent progress and achievements of carbon-based iontronics (ionic sensors, ionic transistors, ionic diodes, ionic pumps, and ionic actuators) for multiple bioinspired applications ranging from information sensing, processing, and actuation, to simple and basic artificial intelligent reflex arc units for the construction of smart and autonomous iontronics. Additionally, the promising potential of carbon materials for smart iontronics is highlighted and prospects are provided in this review, which provide new insights for the further development of nanostructured carbon materials and carbon-based smart iontronics.
Collapse
Affiliation(s)
- Panlong Li
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Przemyslaw Galek
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
- Fraunhofer IWS Winterbergstrasse 28 01277 Dresden Germany
| |
Collapse
|
3
|
Lee SH, Lee SM, Chang SH, Shin DS, Cho WW, Kwak EA, Lee SM, Chung WJ. Fc-binding M13 phage-enhanced electrochemical biosensors for influenza virus detection. Biosens Bioelectron 2025; 273:117156. [PMID: 39823859 DOI: 10.1016/j.bios.2025.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
The importance of in vitro diagnostics (IVDs) has significantly increased, driving the demand for rapid and sensitive diagnostic platforms. Molecular probes play a pivotal role in improving the sensitivity and accuracy of IVDs because of their target-specific signal transduction capabilities. Antibodies, which are commonly used as detection probes, face several challenges, including limited stability, high production costs, and low signal output. In this study, we developed an engineered M13 bacteriophage-based detection system for influenza virus hemagglutinin (HA) using an Electrical ImmunoSorbent Assay (El-ISA). Our design featured Fc-binding motifs on pIII to enable conjugation with target-specific antibodies, along with signal-enhancing biotin modifications on pVIII. The resulting Fc-binding phage probes combined with anti-HA antibodies significantly improved the signal intensity by up to 6.0-fold. This approach enabled the detection of viral proteins in lysate samples at concentrations as low as 44.9 pfu/mL. These findings demonstrated the potential of Fc-binding phage probes as versatile platforms that synergize antibody specificity with enhanced signal transduction. This strategy not only enhances the sensitivity of antibody-based diagnostics but also expands their applicability in diverse research and diagnostic settings.
Collapse
Affiliation(s)
- Sang Hyun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Min Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seo Hyeon Chang
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Won Woo Cho
- Cantis Inc., Ansan, Gyeonggi do, 15588, Republic of Korea
| | - Eun-A Kwak
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang-Myung Lee
- Cantis Inc., Ansan, Gyeonggi do, 15588, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
4
|
Liang B, Wang S, Zheng J, Li B, Cheng N, Gan N. All-in-one microfluidic immunosensing device for rapid and end-to-end determination of salivary biomarkers of cardiovascular diseases. Biosens Bioelectron 2025; 271:117077. [PMID: 39731821 DOI: 10.1016/j.bios.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements. This device enables probe preparation and one-pot immunoassay procedures on a reusable microfluidic chip. By engaging the vibrator with the reaction chamber, the vibration-enhanced incubation module significantly accelerates immune complex formation, drastically reducing the sample-to-answer timeline of approximately 1 h required for room temperature enzyme-linked immunosorbent assay (ELISA) to just under 15 min. We showcase the utility of the device with an on-demand assay for a biomarker panel comprising C-reactive protein (CRP), interleukin 6 (IL-6), and procalcitonin (PCT). The device achieved a linear detection range of 1.75-28 ng mL-1 for CRP and 1.56-100 ng mL-1 for IL-6 and PCT with an R2 > 0.98 for all three biomarkers. The limits of detection were 0.295, 0.400, and 0.947 ng mL-1, respectively. Results from real saliva samples were consistent with standard ELISA (R2 = 0.952). This fully integrated, modular immunosensing device opens up opportunities for household CVD screening and could be adapted for rapid, affordable multiplexed biosensing for other major chronic diseases at the point of care.
Collapse
Affiliation(s)
- Baihui Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Shan Wang
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Junmei Zheng
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Bin Li
- Healthy and Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, Zhejiang, 315336, China
| | - Ningtao Cheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
| | - Ning Gan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China.
| |
Collapse
|
5
|
Huang L, Zhou Y, Hu X, Yang Z. Emerging Combination of Hydrogel and Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409711. [PMID: 39679847 DOI: 10.1002/smll.202409711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Electrochemical sensors are among the most promising technologies for biomarker research, with outstanding sensitivity, selectivity, and rapid response capabilities that make them important in medical diagnostics and prognosis. Recently, hydrogels have gained attention in the domain of electrochemical biosensors because of their superior biocompatibility, excellent adhesion, and ability to form conformal contact with diverse surfaces. These features provide distinct advantages, particularly in the advancement of wearable biosensors. This review examines the contemporary utilization of hydrogels in electrochemical sensing, explores strategies for optimization and prospective development trajectories, and highlights their distinctive advantages. The objective is to provide an exhaustive overview of the foundational principles of electrochemical sensing systems, analyze the compatibility of hydrogel properties with electrochemical methodologies, and propose potential healthcare applications to further illustrate their applicability. Despite significant advances in the development of hydrogel-based electrochemical biosensors, challenges persist, such as improving material fatigue resistance, interfacial adhesion, and maintaining balanced water content across various environments. Overall, hydrogels have immense potential in flexible biosensors and provide exciting opportunities. However, resolving the current obstacles will necessitate additional research and development efforts.
Collapse
Affiliation(s)
- Lingting Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuyang Zhou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
6
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
7
|
Zhang K, Xia Z, Wang Y, Zheng L, Li B, Chu J. Label-free high-throughput impedance-activated cell sorting. LAB ON A CHIP 2024; 24:4918-4929. [PMID: 39315634 DOI: 10.1039/d4lc00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cell sorting holds broad applications in fields such as early cancer diagnosis, cell differentiation studies, drug screening, and single-cell sequencing. However, achieving high-throughput and high-purity in label-free single-cell sorting is challenging. To overcome this issue, we propose a label-free, high-throughput, and high-accuracy impedance-activated cell sorting system based on impedance detection and dual membrane pumps. Leveraging the low-latency characteristics of FPGA, the system facilitates real-time dual-frequency single-cell impedance detection with high-throughput (5 × 104 cells per s) for HeLa, MDA-MB-231, and Jurkat cells. Furthermore, the system accomplishes low-latency (less than 0.3 ms), label-free, high-throughput (1000 particles per s) and high-accuracy (almost 99%) single-particle sorting using FPGA-based high-precision sort-timing prediction. In experiments with Jurkat and MDA-MB-231 cells, the system achieved a throughput of up to 1000 cells per s, maintaining a pre-sorting purity of 28.57% and increasing post-sorting purity to 97.09%. These findings indicate that our system holds significant potential for applications in label-free, high-throughput cell sorting.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ziyang Xia
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yiming Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Biomedical Robotics Laboratory, School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lisheng Zheng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Baoqing Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230027, China
| |
Collapse
|
8
|
Guan Z, Liu Q, Ma CB, Du Y. Electrochemical microfluidic sensing platforms for biosecurity analysis. Anal Bioanal Chem 2024; 416:4663-4677. [PMID: 38523160 DOI: 10.1007/s00216-024-05256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Biosecurity encompasses the health and safety of humans, animals, plants, and the environment. In this article, "biosecurity" is defined as encompassing the comprehensive aspects of human, animal, plant, and environmental safety. Reliable biosecurity testing technology is the key point for effectively assessing biosecurity risks and ensuring biosecurity. Therefore, it is crucial to develop excellent detection technologies to detect risk factors that can affect biosecurity. An electrochemical microfluidic biosensing platform integrates fluid control, target recognition, signal transduction, and output and incorporates the advantages of electrochemical analysis technology and microfluidic technology. Thus, an electrochemical microfluidic biosensing platform, characterized by exceptional analytical sensitivity, portability, rapid analysis speed, low reagent consumption, and low risk of contamination, shows considerable promise for biosecurity detection compared to traditional, more complex, and time-consuming detection technologies. This review provides a concise introduction to electrochemical microfluidic biosensors and biosecurity. It highlights recent research advances in utilizing electrochemical microfluidic biosensing platforms to assess biosecurity risk factors. It includes the use of electrochemical microfluidic biosensors for the detection of risk factors directly endangering biosecurity (direct application: namely, risk factors directly endangering the health of human, animals, and plants) and for the detection of risk factors indirectly endangering biosecurity (indirect application: namely, risk factors endangering the safety of food and the environment). Finally, we outline the current challenges and future perspectives of electrochemical microfluidic biosensing platforms.
Collapse
Affiliation(s)
- Zhaowei Guan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science & Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
9
|
Wang W, Ibarlucea B, Huang C, Dong R, Al Aiti M, Huang S, Cuniberti G. Multi-metallic MOF based composites for environmental applications: synergizing metal centers and interactions. NANOSCALE HORIZONS 2024; 9:1432-1474. [PMID: 38984482 DOI: 10.1039/d4nh00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The escalating threat of environmental issues to both nature and humanity over the past two decades underscores the urgency of addressing environmental pollutants. Metal-organic frameworks (MOFs) have emerged as highly promising materials for tackling these challenges. Since their rise in popularity, extensive research has been conducted on MOFs, spanning from design and synthesis to a wide array of applications, such as environmental remediation, gas storage and separation, catalysis, sensors, biomedical and drug delivery systems, energy storage and conversion, and optoelectronic devices, etc. MOFs possess a multitude of advantageous properties such as large specific surface area, tunable porosity, diverse pore structures, multi-channel design, and molecular sieve capabilities, etc., making them particularly attractive for environmental applications. MOF-based composites inherit the excellent properties of MOFs and also exhibit unique physicochemical properties and structures. The tailoring of central coordinated metal ions in MOFs is critical for their adaptability in environmental applications. Although many reviews on monometallic, bimetallic, and polymetallic MOFs have been published, few reviews focusing on MOF-based composites with monometallic, bimetallic, and multi-metallic centers in the context of environmental pollutant treatment have been reported. This review addresses this gap by providing an in-depth overview of the recent progress in MOF-based composites, emphasizing their applications in hazardous gas sensing, electromagnetic wave absorption (EMWA), and pollutant degradation in both aqueous and atmospheric environments and highlighting the importance of the number and type of metal centers present. Additionally, the various categories of MOFs are summarized. MOF-based composites demonstrate significant promise in addressing environmental challenges, and this review provides a clear and valuable perspective on their potential in environmental applications.
Collapse
Affiliation(s)
- Wei Wang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, 20009, Spain
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
- Dresden Center for Nanoanalysis, Technische Universität Dresden, 01062 Dresden, Germany
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
10
|
Hajam MI, Khan MM. Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomater Sci 2024; 12:218-251. [PMID: 38108438 DOI: 10.1039/d3bm01463k] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microfluidic technologies have garnered significant attention due to their ability to rapidly process samples and precisely manipulate fluids in assays, making them an attractive alternative to conventional experimental methods. With the potential for revolutionary capabilities in the future, this concise review provides readers with insights into the fascinating world of microfluidics. It begins by introducing the subject's historical background, allowing readers to familiarize themselves with the basics. The review then delves into the fundamental principles, discussing the underlying phenomena at play. Additionally, it highlights the different aspects of microfluidic device design, classification, and fabrication. Furthermore, the paper explores various applications, the global market, recent advancements, and challenges in the field. Finally, the review presents a positive outlook on trends and draws lessons to support the future flourishing of microfluidic technologies.
Collapse
Affiliation(s)
- Mohammad Irfan Hajam
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| | - Mohammad Mohsin Khan
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| |
Collapse
|
11
|
Pormrungruang P, Phanthanawiboon S, Jessadaluk S, Larpthavee P, Thaosing J, Rangkasikorn A, Kayunkid N, Waiwijit U, Horprathum M, Klamchuen A, Pruksamas T, Puttikhunt C, Yasui T, Djamal M, Rahong S, Nukeaw J. Metal Oxide Nanostructures Enhanced Microfluidic Platform for Efficient and Sensitive Immunofluorescence Detection of Dengue Virus. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2846. [PMID: 37947691 PMCID: PMC10648689 DOI: 10.3390/nano13212846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Rapid and sensitive detection of Dengue virus remains a critical challenge in global public health. This study presents the development and evaluation of a Zinc Oxide nanorod (ZnO NR)-surface-integrated microfluidic platform for the early detection of Dengue virus. Utilizing a seed-assisted hydrothermal synthesis method, high-purity ZnO NRs were synthesized, characterized by their hexagonal wurtzite structure and a high surface-to-volume ratio, offering abundant binding sites for bioconjugation. Further, a comparative analysis demonstrated that the ZnO NR substrate outperformed traditional bare glass substrates in functionalization efficiency with 4G2 monoclonal antibody (mAb). Subsequent optimization of the functionalization process identified 4% (3-Glycidyloxypropyl)trimethoxysilane (GPTMS) as the most effective surface modifier. The integration of this substrate within a herringbone-structured microfluidic platform resulted in a robust device for immunofluorescence detection of DENV-3. The limit of detection (LOD) for DENV-3 was observed to be as low as 3.1 × 10-4 ng/mL, highlighting the remarkable sensitivity of the ZnO NR-integrated microfluidic device. This study emphasizes the potential of ZnO NRs and the developed microfluidic platform for the early detection of DENV-3, with possible expansion to other biological targets, hence paving the way for enhanced public health responses and improved disease management strategies.
Collapse
Affiliation(s)
- Pareesa Pormrungruang
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (P.P.); (S.J.); (P.L.); (A.R.); (N.K.); (J.N.)
| | - Supranee Phanthanawiboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.P.); (J.T.)
| | - Sukittaya Jessadaluk
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (P.P.); (S.J.); (P.L.); (A.R.); (N.K.); (J.N.)
| | - Preeda Larpthavee
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (P.P.); (S.J.); (P.L.); (A.R.); (N.K.); (J.N.)
| | - Jiraphon Thaosing
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.P.); (J.T.)
| | - Adirek Rangkasikorn
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (P.P.); (S.J.); (P.L.); (A.R.); (N.K.); (J.N.)
| | - Navaphun Kayunkid
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (P.P.); (S.J.); (P.L.); (A.R.); (N.K.); (J.N.)
| | - Uraiwan Waiwijit
- National Electronics and Computer Technology Center, National Science and Development Agency, Pathumtani 12120, Thailand; (U.W.); (M.H.)
| | - Mati Horprathum
- National Electronics and Computer Technology Center, National Science and Development Agency, Pathumtani 12120, Thailand; (U.W.); (M.H.)
| | - Annop Klamchuen
- National Nanotechnology Center, National Science and Development Agency, Pathumtani 12120, Thailand;
| | - Tanapan Pruksamas
- National Center for Genetic and Engineering and Biotechnology (BIOTEC), National Science and Development Agency, Pathumtani 12120, Thailand; (T.P.); (C.P.)
| | - Chunya Puttikhunt
- National Center for Genetic and Engineering and Biotechnology (BIOTEC), National Science and Development Agency, Pathumtani 12120, Thailand; (T.P.); (C.P.)
| | - Takao Yasui
- Department of Life Science and Technology, Tokyo Institute of Technology, B2-521, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan;
| | - Mitra Djamal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung 46132, Indonesia;
| | - Sakon Rahong
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (P.P.); (S.J.); (P.L.); (A.R.); (N.K.); (J.N.)
| | - Jiti Nukeaw
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand; (P.P.); (S.J.); (P.L.); (A.R.); (N.K.); (J.N.)
| |
Collapse
|
12
|
Zhang C, Parichenko A, Choi W, Shin S, Panes-Ruiz LA, Belyaev D, Custódio TF, Löw C, Lee JS, Ibarlucea B, Cuniberti G. Sybodies as Novel Bioreceptors toward Field-Effect Transistor-Based Detection of SARS-CoV-2 Antigens. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40191-40200. [PMID: 37603713 DOI: 10.1021/acsami.3c06073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The SARS-CoV-2 pandemic has increased the demand for low-cost, portable, and rapid biosensors, driving huge research efforts toward new nanomaterial-based approaches with high sensitivity. Many of them employ antibodies as bioreceptors, which have a costly development process that requires animal facilities. Recently, sybodies emerged as a new alternative class of synthetic binders and receptors with high antigen binding efficiency, improved chemical stability, and lower production costs via animal-free methods. Their smaller size is an important asset to consider in combination with ultrasensitive field-effect transistors (FETs) as transducers, which respond more intensely when biorecognition occurs near their surface. This work demonstrates the immobilization of sybodies against the spike protein of the virus on silicon surfaces, which are often integral parts of the semiconducting channel of FETs. Immobilized sybodies maintain the capability to capture antigens, even at low concentrations in the femtomolar range, as observed by fluorescence microscopy. Finally, the first proof of concept of sybody-modified FET sensing is provided using a nanoscopic silicon net as the sensitive area where the sybodies are immobilized. The future development of further sybodies against other biomarkers and their generalization in biosensors could be critical to decrease the cost of biodetection platforms in future pandemics.
Collapse
Affiliation(s)
- Chi Zhang
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Alexandra Parichenko
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Wonyeong Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonghwan Shin
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Luis Antonio Panes-Ruiz
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Dmitry Belyaev
- Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Dresden 01109, Germany
| | - Tânia Filipa Custódio
- Centre for Structural Systems Biology (CSSB), European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85, Hamburg 22607, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85, Hamburg 22607, Germany
| | - Jeong-Soo Lee
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden 01069, Germany
| |
Collapse
|