1
|
Liu E, Zhang J, Wang Z, Deng H, Yi Y. Natural Al 2O 3 Nanodielectric-Based Flexible Sensor with Triple Insensitivity for Healthcare and Robotics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30241-30250. [PMID: 40333940 DOI: 10.1021/acsami.5c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Flexible pressure sensors are critical for advanced systems such as electronic skins and human-machine interaction. Among them, ionic capacitive pressure sensors have attracted widespread attention due to their exceptional flexibility and sensitivity. However, variations in ambient temperature, humidity, and operating circuit frequency significantly degrade the measurement accuracy of ionic capacitive pressure sensors and increase the complexity of subsequent signal processing. This paper proposes a capacitor structure based on the Al-Al2O3-CB interface, which achieves temperature insensitivity (-5 °C-45 °C), humidity insensitivity (20% RH-80% RH), and frequency insensitivity (volatility <3% within the range of 100 kHz-1 MHz), while maintaining high sensitivity (24.62 kPa-1) and fast response and recovery time (33 ms/16 ms), and this design can substantially reduce circuit calibration complexity for sensor systems. The sensor's performance has been validated in various application scenarios, including physiological signal monitoring, gesture recognition, and robotic tactile sensing. By further integrating communication electronic modules, the sensor system offers wheelchair control based on hand movement perception, providing enhanced accessibility and convenience for patients with muscular weakness and other special needs.
Collapse
Affiliation(s)
- Enze Liu
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jiaoyue Zhang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zongjie Wang
- McCormick School of Engineering, Northwestern University, Evanston 60208, Illinois, United States
- Chan Zuckerberg Biohub Chicago, Chicago 60607, Illinois, United States
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Ying Yi
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Cao C, Zhang C, Shen C, Zhang Y, Cheng W, Wu Z, Ren L. Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster. MICROMACHINES 2025; 16:526. [PMID: 40428653 PMCID: PMC12113808 DOI: 10.3390/mi16050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025]
Abstract
The aim of this paper is to develop a compact, rapid-response pressure sensor for underwater propulsion. Flexible pressure sensors are widely utilized in human-computer interactions and wearable electronic devices; however, manufacturing capacitive sensors that offer a broad pressure range and high sensitivity presents significant challenges. Inspired by the dermal papillary microstructure, a capacitive pressure sensor was prepared by infusing polydimethylsiloxane (PDMS) inside an anodic aluminum oxide (AAO) template and then demolding it. The resulting pressure sensor exhibits several key characteristics: high linearity in the range of -5.2 to 6.3 kPa, a comprehensive range for both positive and negative pressure sensing in air or water environments, a quick response time of 52 ms, a recovery time of 40 ms, and excellent stability. The sensor presented in this work is innovatively applied to detect underwater negative pressure, and it is employed for the swift detection of positive and negative pressure changes in underwater thrusters. This work highlights the promising potential of biomimetic flexible capacitive pressure sensors across various applications.
Collapse
Affiliation(s)
- Chong Cao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China; (C.C.)
| | - Chengchun Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China; (C.C.)
| | - Chun Shen
- College of Automotive Engineering, Jilin University, Changchun 130022, China
| | - Yasong Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China; (C.C.)
| | - Wen Cheng
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China; (C.C.)
| | - Zhengyang Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China; (C.C.)
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China; (C.C.)
| |
Collapse
|
3
|
Huang K, Ma Z, Khoo BL. Advancements in Bio-Integrated Flexible Electronics for Hemodynamic Monitoring in Cardiovascular Healthcare. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415215. [PMID: 40278795 DOI: 10.1002/advs.202415215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of global mortality, highlighting the urgent need for effective monitoring and prevention strategies. The rapid advancement of flexible sensing technology and the development of conformal sensors have attracted significant attention due to their potential for continuous, real-time assessment of cardiovascular health over extended periods. This review outlines recent advancements in bio-integrated flexible electronics designed for hemodynamic monitoring and broader CVD healthcare applications. It introduces key physiological indicators relevant to hemodynamics, including heart rate, blood pressure, blood flow velocity, and cardiac output. Next, it discusses flexible bio-integrated electronics engineering strategies, such as working principles and configuration designs. Various non-invasive and invasive bio-integrated devices for monitoring these hemodynamic indicators are then presented. Additionally, the review highlights the role of artificial intelligence algorithms and their practical applications in bio-integrated electronics for hemodynamic detection. Finally, it proposes future directions and addresses potential challenges in the field.
Collapse
Affiliation(s)
- Ke Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen-Futian Research Institute, Shenzhen, 518057, China
| |
Collapse
|
4
|
Park JW, Park J, Jeon J, Chae S, Kim GB, Han G, Park HS, Jeong Y, Jeong KH. Wearable Hyperspectral Photoplethysmography Allows Continuous Monitoring of Exercise-Induced Hypertension. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417625. [PMID: 40279550 DOI: 10.1002/advs.202417625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Indexed: 04/27/2025]
Abstract
Continuous blood pressure (BP) monitoring is essential for cardiovascular health, yet current BP sensors face cuff-dependent limitations. Cuff-free alternatives still suffer from discomfort and discontinuous measurement. Here a wearable hyperspectral photoplethysmography (HS-PPG) is reported for continuous and nonconscious BP monitoring. The HS-PPG module integrates an ultrathin and high-resolution double-folded solid immersion grating microspectrometer (DFSIG-µSPEC) with a white light LED. DFSIG-µSPEC shows an average spectral resolution of 3.4 nm for 550-800 nm in the operational range. The HS-PPG module has a compact physical dimension of 8 mm × 16 mm × 24 mm, suitable for wrist-wearable configuration. The PPG waveforms contain 50 spectral bands, achieving precise measurement of arteriolar pulse transit time (aPTT). The diastolic and systolic BPs are precisely estimated with R-values of 0.92 and 0.96, and mean absolute differences (MAD) of 1.20 and 0.40 mmHg with the 2-element Windkessel model, respectively. Further, the BP is continuously measured with heart rate (HR) and respiratory exchange ratio (RER) with exercise-induced hypertension. Continuous monitoring of systolic blood pressure (SBP) exhibits immediate responses during hemodynamic changes, with the physiological parameters of SBP, HR, and RER during exercise and recovery. The wearable HS-PPG clearly supports the strong potential for high-fidelity continuous BP monitoring.
Collapse
Affiliation(s)
- Jung-Woo Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jaehyeok Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jaehun Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seongok Chae
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Gi Beom Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Geonhui Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
5
|
Chen Z, Song J, Lu Y, Zhu J, Zhu H, Du W, Hu B. Mechanical Compatibility in Stitch Configuration and Sensor Adhesion for High-Fidelity Pulse Wave Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415608. [PMID: 39951279 PMCID: PMC11984903 DOI: 10.1002/advs.202415608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Indexed: 04/12/2025]
Abstract
Wearable electronics can achieve high-fidelity monitoring of pulse waveforms on the body surface enabling early diagnosis of cardiovascular diseases (CVDs). Textile-based wearable devices offer advantages in terms of high permeability and comfort. However, knitted strain sensors struggle to capture small-range deformation signals due to stress dissipation during friction and slip of yarns within the textiles. They are optimized for mechanical adaptability and adhesive capability. In this work, the stitch configurations of knitted structure are adjusted to optimize the energy dissipation ratio during deformation and waveform fitting performance. These electric-mechanical results enabled the selection of the most suitable knitted structure for the clinical diagnosis. On the other hand, the sensor's adhesion is optimized with respect to electrical-force-strain coupling and energy transfer efficiency at the interface between skin and sensor. The balance between the storage modulus and loss modulus are adjusted via the crosslinking degree of the polyacrylamide (PAAm) hydrogel network. As a result, the optimized knitted sensor enables stable collection of pulse waveforms from the radial and dorsalis pedis arteries. In human patient evaluations, the knitting-based strain sensor can distinguish patients with different potential CVD risks through extracted characteristic indicators.
Collapse
Affiliation(s)
- Zhongda Chen
- School of Biomedical Engineering and InformaticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Jun Song
- Materdicine LabSchool of Life SciencesShanghai University99 Shangda RoadShanghai200444China
| | - Yu Lu
- School of Mechanical EngineeringNantong University9 Seyuan RoadNantong226002China
| | - Jing Zhu
- Department of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)Shanghai University500 Yonghe RoadNantong226011China
| | - Hongxu Zhu
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiaotong University600 Yishan RoadXuhuiShanghai200233China
| | - Wenxian Du
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiaotong University600 Yishan RoadXuhuiShanghai200233China
| | - Benhui Hu
- School of Biomedical Engineering and InformaticsNanjing Medical University101 Longmian AvenueNanjing211166China
| |
Collapse
|
6
|
Wang X, Wu G, Zhang X, Lv F, Yang Z, Nan X, Zhang Z, Xue C, Cheng H, Gao L. Traditional Chinese Medicine (TCM)-Inspired Fully Printed Soft Pressure Sensor Array with Self-Adaptive Pressurization for Highly Reliable Individualized Long-Term Pulse Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410312. [PMID: 39344553 DOI: 10.1002/adma.202410312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Reliable, non-invasive, continuous monitoring of pulse and blood pressure is essential for the prevention and diagnosis of cardiovascular diseases. However, the pulse wave varies drastically among individuals or even over time in the same individual, presenting significant challenges for the existing pulse sensing systems. Inspired by pulse diagnosis methods in traditional Chinese medicine (TCM), this work reports a self-adaptive pressure sensing platform (PSP) that combines the fully printed flexible pressure sensor array with an adaptive wristband-style pressure system can identify the optimal pulse signal. Besides the detected pulse rate/width/length, "Cun, Guan, Chi" position, and "floating, moderate, sinking" pulse features, the PSP combined with a machine learning-based linear regression model can also accurately predict blood pressure such as systolic, diastolic, and mean arterial pressure values. The developed diagnostic platform is demonstrated for highly reliable long-term monitoring and analysis of pulse and blood pressure across multiple human subjects over time. The design concept and proof-of-the-concept demonstrations also pave the way for the future developments of flexible sensing devices/systems for adaptive individualized monitoring in the complex practical environments for personalized medicine, along with the support for the development of digital TCM.
Collapse
Affiliation(s)
- Xin Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
| | - Xikuan Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan, 030051, China
| | - Fei Lv
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan, 030051, China
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zengxing Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
7
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
8
|
Henry B, Merz M, Hoang H, Abdulkarim G, Wosik J, Schoettker P. Cuffless Blood Pressure in clinical practice: challenges, opportunities and current limits. Blood Press 2024; 33:2304190. [PMID: 38245864 DOI: 10.1080/08037051.2024.2304190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Background: Cuffless blood pressure measurement technologies have attracted significant attention for their potential to transform cardiovascular monitoring.Methods: This updated narrative review thoroughly examines the challenges, opportunities, and limitations associated with the implementation of cuffless blood pressure monitoring systems.Results: Diverse technologies, including photoplethysmography, tonometry, and ECG analysis, enable cuffless blood pressure measurement and are integrated into devices like smartphones and smartwatches. Signal processing emerges as a critical aspect, dictating the accuracy and reliability of readings. Despite its potential, the integration of cuffless technologies into clinical practice faces obstacles, including the need to address concerns related to accuracy, calibration, and standardization across diverse devices and patient populations. The development of robust algorithms to mitigate artifacts and environmental disturbances is essential for extracting clear physiological signals. Based on extensive research, this review emphasizes the necessity for standardized protocols, validation studies, and regulatory frameworks to ensure the reliability and safety of cuffless blood pressure monitoring devices and their implementation in mainstream medical practice. Interdisciplinary collaborations between engineers, clinicians, and regulatory bodies are crucial to address technical, clinical, and regulatory complexities during implementation. In conclusion, while cuffless blood pressure monitoring holds immense potential to transform cardiovascular care. The resolution of existing challenges and the establishment of rigorous standards are imperative for its seamless incorporation into routine clinical practice.Conclusion: The emergence of these new technologies shifts the paradigm of cardiovascular health management, presenting a new possibility for non-invasive continuous and dynamic monitoring. The concept of cuffless blood pressure measurement is viable and more finely tuned devices are expected to enter the market, which could redefine our understanding of blood pressure and hypertension.
Collapse
Affiliation(s)
- Benoit Henry
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maxime Merz
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Harry Hoang
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ghaith Abdulkarim
- Neuro-Informatics Laboratory, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jedrek Wosik
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Patrick Schoettker
- Service of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Sun X, Guo X, Gao J, Wu J, Huang F, Zhang JH, Huang F, Lu X, Shi Y, Pan L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024; 12:2307. [PMID: 39457619 PMCID: PMC11505155 DOI: 10.3390/biomedicines12102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
E-skin is a bionic device with flexible and intelligent sensing ability that can mimic the touch, temperature, pressure, and other sensing functions of human skin. Because of its flexibility, breathability, biocompatibility, and other characteristics, it is widely used in health management, personalized medicine, disease prevention, and other pan-health fields. With the proposal of new sensing principles, the development of advanced functional materials, the development of microfabrication technology, and the integration of artificial intelligence and algorithms, e-skin has developed rapidly. This paper focuses on the characteristics, fundamentals, new principles, key technologies, and their specific applications in health management, exercise monitoring, emotion and heart monitoring, etc. that advanced e-skin needs to have in the healthcare field. In addition, its significance in infant and child care, elderly care, and assistive devices for the disabled is analyzed. Finally, the current challenges and future directions of the field are discussed. It is expected that this review will generate great interest and inspiration for the development and improvement of novel e-skins and advanced health monitoring systems.
Collapse
Affiliation(s)
- Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jiansong Gao
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Xiao Lu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210093, China;
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| |
Collapse
|
10
|
Hu B, Xu D, Shao Y, Nie Z, Liu P, Li J, Zhou L, Wang P, Huang N, Liu J, Lu Y, Wu Z, Wang B, Mei Y, Han M, Li R, Song E. Ultrathin crystalline silicon-based omnidirectional strain gauges for implantable/wearable characterization of soft tissue biomechanics. SCIENCE ADVANCES 2024; 10:eadp8804. [PMID: 39383239 PMCID: PMC11463283 DOI: 10.1126/sciadv.adp8804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Monitoring soft-tissue biomechanics is of interest in biomedical research and clinical treatment of diseases. An important focus is biointegrated strain gauges that track time-dependent mechanics of targeted tissues with deforming surfaces over multidirections. Existing methods provide limited gauge factors, tailored for sensing within specific directions under quasi-static conditions. We present development and applicability of implantable/wearable strain gauges that integrate multiple ultrathin monocrystalline silicon-based sensors aligned with different directions, in stretchable formats for dynamically monitoring direction angle-sensitive strain. We experimentally and computationally establish operational principles, with theoretical systems that enable determination of intensities and direction of applied strains at an omnidirectional scale. Wearable evaluations range from cardiac pulse to intraocular pressure monitoring of eyeballs. The device can evaluate cardiac disorders of myocardial infarction and hypoxia of living rats and locate the pathological orientation associated with infarction, in designs with possibilities as biodegradable implants for stable operation. These findings create clinical significance of the devices for monitoring complex dynamic biomechanics.
Collapse
Affiliation(s)
- Bofan Hu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
| | - Dian Xu
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yuting Shao
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhongyi Nie
- Department of Biomedical Engineering, College of Future technology, Peking University, Beijing 100871, China
| | - Pengchuan Liu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Jinbao Li
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Lianjie Zhou
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Pei Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200003, China
| | - Ningge Huang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Junhan Liu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Yifei Lu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Zhongyuan Wu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bo Wang
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Yongfeng Mei
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future technology, Peking University, Beijing 100871, China
| | - Rui Li
- School of Mechanics and Aerospace Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, China
- International Institute for Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai 200438, China
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Yang Y, Yang S, Xia X, Hui S, Wang B, Zou B, Zhang Y, Sun J, Xin JH. MXenes for Wearable Physical Sensors toward Smart Healthcare. ACS NANO 2024; 18:24705-24740. [PMID: 39186373 DOI: 10.1021/acsnano.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shenglin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shigang Hui
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jianping Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - John H Xin
- Research Institute for Intelligent Wearable Systems School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
13
|
Shao B, Chen X, Chen X, Peng S, Song M. Advancements in MXene Composite Materials for Wearable Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4092. [PMID: 39000870 PMCID: PMC11244375 DOI: 10.3390/s24134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
In recent years, advancements in the Internet of Things (IoT), manufacturing processes, and material synthesis technologies have positioned flexible sensors as critical components in wearable devices. These developments are propelling wearable technologies based on flexible sensors towards higher intelligence, convenience, superior performance, and biocompatibility. Recently, two-dimensional nanomaterials known as MXenes have garnered extensive attention due to their excellent mechanical properties, outstanding electrical conductivity, large specific surface area, and abundant surface functional groups. These notable attributes confer significant potential on MXenes for applications in strain sensing, pressure measurement, gas detection, etc. Furthermore, polymer substrates such as polydimethylsiloxane (PDMS), polyurethane (PU), and thermoplastic polyurethane (TPU) are extensively utilized as support materials for MXene and its composites due to their light weight, flexibility, and ease of processing, thereby enhancing the overall performance and wearability of the sensors. This paper reviews the latest advancements in MXene and its composites within the domains of strain sensors, pressure sensors, and gas sensors. We present numerous recent case studies of MXene composite material-based wearable sensors and discuss the optimization of materials and structures for MXene composite material-based wearable sensors, offering strategies and methods to enhance the development of MXene composite material-based wearable sensors. Finally, we summarize the current progress of MXene wearable sensors and project future trends and analyses.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xiaotong Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xingwei Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Guo T, Wan Z, Panahi-Sarmad M, Banvillet G, Lu Y, Zargar S, Tian J, Jiang F, Mao Y, Tu Q, Rojas OJ. Chitin Nanofibers Enable the Colloidal Dispersion of Carbon Nanomaterials in Aqueous Phase and Hybrid Material Coassembly. ACS NANO 2024; 18:14954-14967. [PMID: 38820368 DOI: 10.1021/acsnano.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Chitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system. Related effects are found to be transferable to multiwalled carbon nanotubes and graphene nanosheets. The observations explain the functionality of hybrid membranes obtained by aqueous phase processing, which benefit from an excellent areal mass distribution (correlated to piezoresistivity), also contributing to high electromechanical performance. The water resistance and flexibility of the ChNF/CNT membranes (along with its tensile strength at break of 190 MPa, conductivity of up to 426 S/cm, and piezoresistivity and light absorption properties) are conveniently combined in a device demonstration, a sunlight water evaporator. The latter is shown to present a high evaporation rate (as high as 1.425 kg water m-2 h-1 under one sun illumination) and recyclability.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Mahyar Panahi-Sarmad
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gabriel Banvillet
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shiva Zargar
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Jing Tian
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Qingshi Tu
- Sustainable Bioeconomy Research Group, Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1 Z4, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
15
|
Zhou E, Shen Q, Hou Y. Integrating artificial intelligence into the modernization of traditional Chinese medicine industry: a review. Front Pharmacol 2024; 15:1181183. [PMID: 38464717 PMCID: PMC10921893 DOI: 10.3389/fphar.2024.1181183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) is the practical experience and summary of the Chinese nation for thousands of years. It shows great potential in treating various chronic diseases, complex diseases and major infectious diseases, and has gradually attracted the attention of people all over the world. However, due to the complexity of prescription and action mechanism of TCM, the development of TCM industry is still in a relatively conservative stage. With the rise of artificial intelligence technology in various fields, many scholars began to apply artificial intelligence technology to traditional Chinese medicine industry and made remarkable progress. This paper comprehensively summarizes the important role of artificial intelligence in the development of traditional Chinese medicine industry from various aspects, including new drug discovery, data mining, quality standardization and industry technology of traditional Chinese medicine. The limitations of artificial intelligence in these applications are also emphasized, including the lack of pharmacological research, database quality problems and the challenges brought by human-computer interaction. Nevertheless, the development of artificial intelligence has brought new opportunities and innovations to the modernization of traditional Chinese medicine. Integrating artificial intelligence technology into the comprehensive application of Chinese medicine industry is expected to overcome the major problems faced by traditional Chinese medicine industry and further promote the modernization of the whole traditional Chinese medicine industry.
Collapse
Affiliation(s)
- E. Zhou
- Yuhu District Healthcare Security Administration, Xiangtan, China
| | - Qin Shen
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yang Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
16
|
Wang F, Su D, Ma K, Qin B, Li B, Li J, Zhang C, Xin Y, Huang Z, Yang W, Wang S, He X. Reliable and Scalable Piezoresistive Sensors with an MXene/MoS 2 Hierarchical Nanostructure for Health Signals Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44001-44011. [PMID: 37671797 DOI: 10.1021/acsami.3c09464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The increased popularity of wearable electronic devices has led to a greater need for advanced sensors. However, fabricating pressure sensors that are flexible, highly sensitive, robust, and compatible with large-scale fabrication technology is challenging. This work investigates a piezoresistive sensor constructed from an MXene/MoS2 hierarchical nanostructure, which is obtained through an easy and inexpensive fabrication process. The sensor exhibits a high sensitivity of 0.42 kPa-1 (0-1.5 kPa), rapid response (∼36 ms), and remarkable mechanical durability (∼10,000 cycles at 13 kPa). The sensor has been demonstrated to be successful in detecting human motion, speech recognition, and physiological signals, particularly in analyzing human pulse. These data can be used to alert and identify irregularities in human health. Additionally, the sensing units are able to construct sensor arrays of various sizes and configurations, enabling pressure distribution imaging in a variety of application scenarios. This research proposes a cost-effective and scalable approach to fabricating piezoresistive sensors and sensor arrays, which can be utilized for monitoring human health and for use in human-machine interfaces.
Collapse
Affiliation(s)
- Fengming Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Daojian Su
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Ke Ma
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Bolong Qin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Baijun Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Junxian Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Chi Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Zundi Huang
- School of Rail Transportation, Wuyi University, Jiangmen 529020, P.R. China
| | - Weijia Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Shuangpeng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| |
Collapse
|
17
|
Seesaard T, Wongchoosuk C. Flexible and Stretchable Pressure Sensors: From Basic Principles to State-of-the-Art Applications. MICROMACHINES 2023; 14:1638. [PMID: 37630177 PMCID: PMC10456594 DOI: 10.3390/mi14081638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Flexible and stretchable electronics have emerged as highly promising technologies for the next generation of electronic devices. These advancements offer numerous advantages, such as flexibility, biocompatibility, bio-integrated circuits, and light weight, enabling new possibilities in diverse applications, including e-textiles, smart lenses, healthcare technologies, smart manufacturing, consumer electronics, and smart wearable devices. In recent years, significant attention has been devoted to flexible and stretchable pressure sensors due to their potential integration with medical and healthcare devices for monitoring human activity and biological signals, such as heartbeat, respiratory rate, blood pressure, blood oxygen saturation, and muscle activity. This review comprehensively covers all aspects of recent developments in flexible and stretchable pressure sensors. It encompasses fundamental principles, force/pressure-sensitive materials, fabrication techniques for low-cost and high-performance pressure sensors, investigations of sensing mechanisms (piezoresistivity, capacitance, piezoelectricity), and state-of-the-art applications.
Collapse
Affiliation(s)
- Thara Seesaard
- Department of Physics, Faculty of Science and Technology, Kanchanaburi Rajabhat University, Kanchanaburi 71190, Thailand;
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|