1
|
Huang L, Zhou Y, Hu X, Yang Z. Emerging Combination of Hydrogel and Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409711. [PMID: 39679847 DOI: 10.1002/smll.202409711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Electrochemical sensors are among the most promising technologies for biomarker research, with outstanding sensitivity, selectivity, and rapid response capabilities that make them important in medical diagnostics and prognosis. Recently, hydrogels have gained attention in the domain of electrochemical biosensors because of their superior biocompatibility, excellent adhesion, and ability to form conformal contact with diverse surfaces. These features provide distinct advantages, particularly in the advancement of wearable biosensors. This review examines the contemporary utilization of hydrogels in electrochemical sensing, explores strategies for optimization and prospective development trajectories, and highlights their distinctive advantages. The objective is to provide an exhaustive overview of the foundational principles of electrochemical sensing systems, analyze the compatibility of hydrogel properties with electrochemical methodologies, and propose potential healthcare applications to further illustrate their applicability. Despite significant advances in the development of hydrogel-based electrochemical biosensors, challenges persist, such as improving material fatigue resistance, interfacial adhesion, and maintaining balanced water content across various environments. Overall, hydrogels have immense potential in flexible biosensors and provide exciting opportunities. However, resolving the current obstacles will necessitate additional research and development efforts.
Collapse
Affiliation(s)
- Lingting Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuyang Zhou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Liu H, Liu YW, Yang RY, Wu MJ, Yu ZW, Han JW, Zhang CZ, Huang PF, Liu AL, Liu MM. Therapeutic drug monitoring of methotrexate by disposable SPCE biosensor for personalized medicine. Anal Chim Acta 2025; 1335:343473. [PMID: 39643323 DOI: 10.1016/j.aca.2024.343473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Methotrexate (MTX) is widely used in clinical practice for the treatment of malignant tumors and autoimmune diseases. High-dose MTX has been shown to be an effective approach for treating various malignant tumors, but it is accompanied by numerous toxic side effects, necessitating therapeutic drug monitoring (TDM) for patients and timely "folinic acid rescue." High-performance liquid chromatography and fluorescent immunoassay (FIA) are currently used to detect MTX, but these methods are limited by complex sample preparation, time consumption, and high cost. Therefore, a simple, rapid, and cost-effective MTX measurement method is required. RESULTS We developed a flexible and inexpensive electrochemical sensor using a stearyl trimethyl ammonium bromide (STAB)-modified, screen-printed carbon electrode to directly detect MTX in human serum. Assay performance was validated via detection of MTX in spiked buffer. The sensor was capable of measuring MTX concentrations ranging from 0.01 to 1 μM and 1-1500 μM, with a limit of detection of 3.1 nM and a limit of quantitation of 3.5 nM. For the samples simulating combined medication, the sensor exhibited outstanding selectivity, in cross-reactivity, with the maximum response value of interferents reaching only 3.49 %. Additionally, the sensor shows reliable repeatability with a relative standard deviation of 3.8 % and remarkable stability. Recovery in human serum validated the clinical utility of the sensor in point-of-care testing conditions. The sensor's applicability to personal medicine was confirmed by detecting MTX blood concentration in patients with different diseases. The results obtained by the sensor were compared with those obtained by the FIA technique, a method commonly used in hospitals, showing a high level of consistency between both methods. SIGNIFICANCE To meet the requirements of personalized medicine for MTX-patients, we developed a disposable biosensor with wide detection range from 0.01 to 1 μM and 1-1500 μM. Owing to the effective enrichment of STAB, the electrochemical response was sensitive, selective, stable, and rapid. As per the clinical test results, our sensor has shown a high level of consistency with the FIA method, indicating its potential to replace FIA as a cost-effective platform for MTX-TDM.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yi-Wei Liu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ruo-Yu Yang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Mei-Juan Wu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zi-Wei Yu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jing-Wen Han
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Chen-Zhi Zhang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Pin-Fang Huang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Meng-Meng Liu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
3
|
Geng C, Zhang X, Zhu X, Li B, Ren Z, Liu X, Travas-Sejdic J, Liu X. Fabrication of polyoxometalate dispersed cobalt oxide nanowires for electrochemically monitoring superoxide radicals from Hela cell mitochondria. Talanta 2025; 282:127037. [PMID: 39427407 DOI: 10.1016/j.talanta.2024.127037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
An ultrasensitive electrochemical sensor is constructed by electrostatically adsorbing negatively charged hourglass-shape Cu-Polyoxometalate (POM) onto a positively charged CoO nanowires modified carbon cloth. The petaloid CoO nanowires have a large specific surface area that can well disperse open-structured Cu-POM to form Cu-POM@CoONWs@CC, which can maximumly expose catalytic active centers (Co2+ and Cu2+) and accelerate mass/charge transfer. In addition to the above advantages, the excellent electron exchange ability of Cu-POM and good conductivity of CoONWs@CC endow the sensor with good detection capability to H2O2 including a linear detection range of 0.05-1.4 μA μM-1, a low detection limit of 0.022 μM, high sensitivity of 110.48 μA μM-1, good selectivity and long-term stability. Due to the fast transformation of superoxide anion (O2∙-) to H2O2, the sensor can indirectly monitor the electron leakage resulting in the formation of O2∙- via detecting H2O2. Afterwards, Hela cell mitochondria were extracted from the living cells that cultured with different mitochondrial inhibitors and the release of O2∙- from the corresponding mitochondrial complexes was monitored by the sensor. Through comparing the current signals, we determined that complex I is probably the main electron leakage site. This work could provide meaningful information for the diagnosis of certain oxidative stress diseases.
Collapse
Affiliation(s)
- Chaoyao Geng
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiujuan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xinyao Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Bingjie Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Zhenhua Ren
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand.
| | - Xiaoqiang Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Aftab S, Koyyada G, Mukhtar M, Kabir F, Nazir G, Memon SA, Aslam M, Assiri MA, Kim JH. Laser-Induced Graphene for Advanced Sensing: Comprehensive Review of Applications. ACS Sens 2024; 9:4536-4554. [PMID: 39284075 DOI: 10.1021/acssensors.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Laser-induced graphene (LIG) and Laser-scribed graphene (LSG) are both advanced materials with significant potential in various applications, particularly in the field of sustainable sensors. The practical uses of LIG (LSG), which include gas detection, biological process monitoring, strain assessment, and environmental variable tracking, are thoroughly examined in this review paper. Its tunable characteristics distinguish LIG (LSG), which is developed from accurate laser beam modulation on polymeric substrates, and they are essential in advancing sensing technologies in many applications. The recent advances in LIG (LSG) applications include energy storage, biosensing, and electronics by steadily advancing efficiency and versatility. The remarkable flexibility of LIG (LSG) and its transformative potential in regard to sensor manufacturing and utilization are highlighted in this manuscript. Moreover, it thoroughly examines the various fabrication methods used in LIG (LSG) production, highlighting precision and adaptability. This review navigates the difficulties that are encountered in regard to implementing LIG sensors and looks ahead to future developments that will propel the industry forward. This paper provides a comprehensive summary of the latest research in LIG (LSG) and elucidates this innovative material's advanced and sustainable elements.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Ganesh Koyyada
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, School of Sciences, SR University, Warangal 506371, Telangana, India
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6 British Columbia, Canada
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul 05006, Republic of Korea
| | - Sufyan Ali Memon
- Defense Systems Engineering Sejong University, Seoul 05006, South Korea
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jae Hong Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Wang Y, Zeng R, Tian S, Chen S, Bi Z, Tang D, Knopp D. Bimetallic Single-Atom Nanozyme-Based Electrochemical-Photothermal Dual-Function Portable Immunoassay with Smartphone Imaging. Anal Chem 2024; 96:13663-13671. [PMID: 39126679 PMCID: PMC11339724 DOI: 10.1021/acs.analchem.4c02606] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Rapid and accurate detection of human epidermal growth factor receptor 2 (HER2) is crucial for the early diagnosis and prognosis of breast cancer. In this study, we reported an iron-manganese ion N-doped carbon single-atom catalyst (FeMn-NCetch/SAC) bimetallic peroxidase mimetic enzyme with abundant active sites etched by H2O2 and further demonstrated unique advantages of single-atom bimetallic nanozymes in generating hydroxyl radicals by density functional theory (DFT) calculations. As a proof of concept, a portable device-dependent electrochemical-photothermal bifunctional immunoassay detection platform was designed to achieve reliable detection of HER2. In the enzyme-linked reaction, H2O2 was generated by substrate catalysis via secondary antibody-labeled glucose oxidase (GOx), while FeMn-NCetch/SAC nanozymes catalyzed the decomposition of H2O2 to form OH*, which catalyzed the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to ox-TMB. The ox-TMB generation was converted from the colorimetric signals to electrical and photothermal signals by applied potential and laser irradiation, which could be employed for the quantitative detection of HER2. With the help of this bifunctional detection technology, HER2 was accurately detected in two ways: photothermally, with a linear scope of 0.01 to 2.0 ng mL-1 and a limit of detection (LOD) of 7.5 pg mL-1, and electrochemically, with a linear scope of 0.01 to 10 ng mL-1 at an LOD of 3.9 pg mL-1. By successfully avoiding environmental impacts, the bifunctional-based immunosensing strategy offers strong support for accurate clinical detection.
Collapse
Affiliation(s)
- Yunsen Wang
- Key
Laboratory of Analytical Science for Food Safety and Biology (MOE
& Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic
of China
| | - Ruijin Zeng
- Key
Laboratory of Analytical Science for Food Safety and Biology (MOE
& Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic
of China
| | - Shuo Tian
- Key
Laboratory of Analytical Science for Food Safety and Biology (MOE
& Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic
of China
| | - Shuyun Chen
- Key
Laboratory of Analytical Science for Food Safety and Biology (MOE
& Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic
of China
| | - Zhilan Bi
- Key
Laboratory of Analytical Science for Food Safety and Biology (MOE
& Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic
of China
| | - Dianping Tang
- Key
Laboratory of Analytical Science for Food Safety and Biology (MOE
& Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic
of China
| | - Dietmar Knopp
- TUM
School of Natural Sciences, Department of Chemistry, Chair of Analytical
Chemistry and Water Chemistry, Technical
University Munich, Lichtenbergstrasse
4, Garching 85748, Germany
| |
Collapse
|
6
|
Li Y, Li Y, Wu S, Wu X, Shu J. Laser-Scribed Graphene for Human Health Monitoring: From Biophysical Sensing to Biochemical Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:942. [PMID: 38869567 PMCID: PMC11173585 DOI: 10.3390/nano14110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Laser-scribed graphene (LSG), a classic three-dimensional porous carbon nanomaterial, is directly fabricated by laser irradiation of substrate materials. Benefiting from its excellent electrical and mechanical properties, along with flexible and simple preparation process, LSG has played a significant role in the field of flexible sensors. This review provides an overview of the critical factors in fabrication, and methods for enhancing the functionality of LSG. It also highlights progress and trends in LSG-based sensors for monitoring physiological indicators, with an emphasis on device fabrication, signal transduction, and sensing characteristics. Finally, we offer insights into the current challenges and future prospects of LSG-based sensors for health monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Yakang Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Yaxin Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Sirui Wu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Xuewen Wu
- Department of Chemical Engineering, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jian Shu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
7
|
Echeverri D, Calucho E, Marrugo-Ramírez J, Álvarez-Diduk R, Orozco J, Merkoçi A. Capacitive immunosensing at gold nanoparticle-decorated reduced graphene oxide electrodes fabricated by one-step laser nanostructuration. Biosens Bioelectron 2024; 252:116142. [PMID: 38401281 DOI: 10.1016/j.bios.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Nanostructured electrochemical biosensors have ushered in a new era of diagnostic precision, offering enhanced sensitivity and specificity for clinical biomarker detection. Among them, capacitive biosensing enables ultrasensitive label-free detection of multiple molecular targets. However, the complexity and cost associated with conventional fabrication methods of nanostructured platforms hinder the widespread adoption of these devices. This study introduces a capacitive biosensor that leverages laser-engraved reduced graphene oxide (rGO) electrodes decorated with gold nanoparticles (AuNPs). The fabrication involves laser-scribed GO-Au3+ films, yielding rGO-AuNP electrodes, seamlessly transferred onto a PET substrate via a press-stamping methodology. These electrodes have a remarkable affinity for biomolecular recognition after being functionalized with specific bioreceptors. For example, initial studies with human IgG antibodies confirm the detection capabilities of the biosensor using electrochemical capacitance spectroscopy. Furthermore, the biosensor can quantify CA-19-9 glycoprotein, a clinical cancer biomarker. The biosensor exhibits a dynamic range from 0 to 300 U mL-1, with a limit of detection of 8.9 U mL-1. Rigorous testing with known concentrations of a pretreated CA-19-9 antigen from human fluids confirmed their accuracy and reliability in detecting the glycoprotein. This study signifies notable progress in capacitive biosensing for clinical biomarkers, potentially leading to more accessible and cost-effective point-of-care solutions.
Collapse
Affiliation(s)
- Danilo Echeverri
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, 050010, Medellín, Colombia
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Jose Marrugo-Ramírez
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Ruslán Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, 050010, Medellín, Colombia.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
8
|
Srivastava A, Azad UP. Nanobioengineered surface comprising carbon based materials for advanced biosensing and biomedical application. Int J Biol Macromol 2023; 253:126802. [PMID: 37690641 DOI: 10.1016/j.ijbiomac.2023.126802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Carbon-based nanomaterials (CNMs) are at the cutting edge of materials science. Due to their distinctive architectures, substantial surface area, favourable biocompatibility, and reactivity to internal and/or external chemico-physical stimuli, carbon-based nanomaterials are becoming more and more significant in a wide range of applications. Numerous research has been conducted and still is going on to investigate the potential uses of carbon-based hybrid materials for diverse applications such as biosensing, bioimaging, smart drug delivery with the potential for theranostic or combinatorial therapies etc. This review is mainly focused on the classifications and synthesis of various types of CNMs and their electroanalytical application for development of efficient and ultra-sensitive electrochemical biosensors for the point of care diagnosis of fatal and severe diseases at their very initial stage. This review is mainly focused on the classification, synthesis and application of carbon-based material for biosensing applications. The integration of various types of CNMs with nanomaterials, enzymes, redox mediators and biomarkers have been used discussed in development of smart biosensing platform. We have also made an effort to discuss the future prospects for these CNMs in the biosensing area as well as the most recent advancements and applications which will be quite useful for the researchers working across the globe working specially in biosensors field.
Collapse
Affiliation(s)
- Ananya Srivastava
- Department of Chemistry, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Uday Pratap Azad
- Laboratory of Nanoelectrochemistry, Department of Chemistry, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur 495 009, CG, India.
| |
Collapse
|