1
|
Chen J, Zhang R, Guo S, Pan Y, Nezamzadeh-Ejhieh A, Lan Q. Metal-organic frameworks (MOFs): A review of volatile organic compounds (VOCs) detection. Talanta 2025; 286:127498. [PMID: 39753075 DOI: 10.1016/j.talanta.2024.127498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 03/03/2025]
Abstract
This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health. Therefore, an excellent research interest is developing efficient and sensitive detection technologies for VOCs. In this article, we first introduce the definition and classification of VOCs and their sources and discuss the environmental and health hazards of VOCs. Then, the discussion focuses on various sensors based on MOFs, including electrochemical sensors, fluorescence sensors, colorimetric sensors, and surface-enhanced Raman spectroscopy (SERS) sensors. In electrochemical detection, MOFs, as sensing materials, exhibit good detection performance due to their ultra-large surface area and highly adjustable pore size structure. In fluorescence detection, MOFs achieve high sensitivity and selective detection of VOCs under their unique optical properties. Colorimetric sensors, on the other hand, achieve the detection of VOCs through color change, which has the advantages of low cost and easy operation. In contrast, SERS sensors utilize the high surface area of MOFs and specific Raman enhancement effect to achieve ultra-high sensitivity detection of VOCs, which is especially suitable for trace analysis. Immediately after that, we describe the research progress of various sensors for VOCs detection and analyze their detection mechanisms and application prospects. Finally, the MOFs-based VOCs detection technology is summarized, and the current challenges and future development directions are pointed out.
Collapse
Affiliation(s)
- Jiahao Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523700, China; School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Ren Zhang
- School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Sirui Guo
- School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523700, China; School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Alireza Nezamzadeh-Ejhieh
- Chemistry Department, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523700, China.
| |
Collapse
|
2
|
Li H, Liu X, Feng X, Guo X, Xu Z, Wang Y. Rapid assessment of acetophenone using an anti-interfering triple-emission Ln 3+-functionalized HOF@MOF sensor. Talanta 2024; 280:126718. [PMID: 39154436 DOI: 10.1016/j.talanta.2024.126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The development of high-performance sensors for rapidly detecting acetylacetone (AP) in water samples is necessary because its release into the environment can result in many vital problems for human health and environment. Herein, we first designed a hybrid by integrating HOF with ZIF-8 through a sequential growth strategy. By separately introducing blue-emitting SiQDs and green- and red-emitting Tb3+ and Eu3+ into ZIF-8 and HOF, the resultant ZIF-8@SiQDs@HOF@Eu3+@Tb3+ comprised three emission peaks at 484, 545 and 620 nm, all of which could be employed as switch-off responsive peaks to low concentrations of AP with a detection limit of 0.79 ppm. However, in environments with high concentrations of AP, a turn-on signal at 484 nm was observed. Thereupon, the ratiometric fluorescence intensity of the ternary emission varied within different concentration ranges, accompanied by the fluorescence color evolution from red to salmon to plum to purple to final blue. Moreover, a portable sensing film was fabricated for rapid warning, sensitive and visual determination of AP in complicated environments. Therefore, this triple-emission sensor with wide color variations and strong anti-interference advantages could promote further research to improve the selectivity, sensitivity and inherent self-correction of multimodal fluorescence detection and the ease of sensing operation.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoqin Feng
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyuan Guo
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China; Henan Provincial Research Center for Early Warning and Emergency Engineering of Combusstion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
3
|
Zhao M, Lu H, You Z, Chen H, Wang X, Zhang Y, Wang Y. Olfactory Visualization Sensing Array Made with CelluMOFs to Predict Fruit Ripeness Using Deep Learning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56623-56633. [PMID: 39403818 DOI: 10.1021/acsami.4c09402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Developing a colorimetry-based artificial scent screening system (i.e., an olfactory visual sensing system) with high sensitivity and accurate pattern recognition for detecting fruit ripeness remains challenging. In this work, we construct a flexible dye/CelluMOFs-based sensor array with improved sensitivity for on-site detection of characteristic gases of fruits and integrate a densely connected convolutional network (DenseNet) into the sensor array, enabling it to recognize unique scent fingerprints and categorize the ripeness of fruits. In the system, CelluMOFs are synthesized through in situ growth of γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) on flexible fiber filter paper to fabricate a uniform, flexible and porous dye/CelluMOFs sensitive membrane. Compared to the pristine filter paper, the CelluMOFs exhibit increased porosity with a 62 times higher specific surface area and a 3-fold increase in dye loading capacity after 12 h of adsorption. The prepared dye/CelluMOFs sensing film shows outstanding mechanical and detection stability with negligible deviation after 100 cycles of rubbing. The colorimetric visualization arrays with multiple colorimetric dye/CelluMOFs chips, enable the sensitive recognition and detection of nine kinds of characteristic fruit odors and achieve a high response at 8-1500 ppm of trans-2-hexenal, showcasing remarkably low gas detection thresholds. On the basis of the ppm-level limit of detection with high sensitivity, the fabricated colorimetric sensor arrays are typically used for in situ assessment of fruit ripeness by integrating DenseNet. This approach achieves a satisfactory classification accuracy of 99.09% on the validation set, enabling high-precision prediction of fruit ripeness levels.
Collapse
Affiliation(s)
- Mingming Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Huizi Lu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Zhiheng You
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Huayun Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Xiao Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| | - Yaqing Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, P. R. China
| |
Collapse
|
4
|
Wang X, Qi H, Shao Y, Zhao M, Chen H, Chen Y, Ying Y, Wang Y. Extrusion Printing of Surface-Functionalized Metal-Organic Framework Inks for a High-Performance Wearable Volatile Organic Compound Sensor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400207. [PMID: 38655847 PMCID: PMC11220709 DOI: 10.1002/advs.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Wearable sensors hold immense potential for real-time and non-destructive sensing of volatile organic compounds (VOCs), requiring both efficient sensing performance and robust mechanical properties. However, conventional colorimetric sensor arrays, acting as artificial olfactory systems for highly selective VOC profiling, often fail to meet these requirements simultaneously. Here, a high-performance wearable sensor array for VOC visual detection is proposed by extrusion printing of hybrid inks containing surface-functionalized sensing materials. Surface-modified hydrophobic polydimethylsiloxane (PDMS) improves the humidity resistance and VOC sensitivity of PDMS-coated dye/metal-organic frameworks (MOFs) composites. It also enhances their dispersion within liquid PDMS matrix, thereby promoting the hybrid liquid as high-quality extrusion-printing inks. The inks enable direct and precise printing on diverse substrates, forming a uniform and high particle-loading (70 wt%) film. The printed film on a flexible PDMS substrate demonstrates satisfactory flexibility and stretchability while retaining excellent sensing performance from dye/MOFs@PDMS particles. Further, the printed sensor array exhibits enhanced sensitivity to sub-ppm VOC levels, remarkable resistance to high relative humidity (RH) of 90%, and the differentiation ability for eight distinct VOCs. Finally, the wearable sensor proves practical by in situ monitoring of wheat scab-related VOC biomarkers. This study presents a versatile strategy for designing effective wearable gas sensors with widespread applications.
Collapse
Affiliation(s)
- Xiao Wang
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Hao Qi
- State Key Laboratory of Rice BiologyZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058P. R. China
| | - Yuzhou Shao
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Mingming Zhao
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Huayun Chen
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
| | - Yun Chen
- State Key Laboratory of Rice BiologyZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhou310058P. R. China
| | - Yibin Ying
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou310058P. R. China
| | - Yixian Wang
- School of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhou310058P. R. China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhou310058P. R. China
| |
Collapse
|