1
|
Fontecilla-Camps JC. Primordial bioenergy sources: The two facets of adenosine triphosphate. J Inorg Biochem 2020; 216:111347. [PMID: 33450675 DOI: 10.1016/j.jinorgbio.2020.111347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
Life requires energy to exist, to reproduce and to survive. Two major hypotheses have been put forward concerning the source of this energy at the very early stages of life evolution: (i) abiotic organics either brought to Earth by comets and/or meteorites, or produced at its atmosphere, and (ii) mineral surface-dependent bioinorganic catalytic reactions. Considering the latter possibility, I propose that, besides being a precursor of nucleic acids, adenosine triphosphate (ATP), which probably was used very early to improve the fidelity of nucleic acid polymerization, played an essential role in the transition between mineral-bound protocells and their free counterparts. Indeed, phosphorylation by ATP renders carboxylate groups electrophilic enough to react with nucleophiles such as amines, an effect that, thanks to their Lewis acid character, also have dehydrated metal ions on mineral surfaces. Early ATP synthesis for metabolic processes most likely depended on substrate level phosphorylation. However, the exaptation of a hexameric helicase-like ATPase and a transmembrane H+ pump (which evolved to counteract the acidity caused by fermentation reactions within the protocell) generated a much more efficient membrane-bound ATP synthase that uses chemiosmosis to make ATP.
Collapse
|
2
|
Muller AWJ. Cancer is an adaptation that selects in animals against energy dissipation. Med Hypotheses 2017; 104:104-115. [PMID: 28673566 DOI: 10.1016/j.mehy.2017.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/30/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
As cancer usually follows reproduction, it is generally assumed that cancer does not select. Graham has however argued that juvenile cancer, which precedes reproduction, could during evolution have implemented a "cancer selection" that resulted in novel traits that suppress this juvenile cancer; an example is protection against UV sunlight-induced cancer, required for the emergence of terrestrial animals from the sea. We modify the cancer selection mechanism to the posited "cancer adaptation" mechanism, in which juvenile mortality is enhanced through the diminished care received by juveniles from their (grand) parents when these suffer from cancer in old age. Moreover, it is posited that the cancer adaptation selects against germline "dissipative genes", genes that result in enhanced free energy dissipation. Cancer's progression is interpreted as a cascade at increasing scale of repeated amplification of energy dissipation, a cascade involving heat shock, the Warburg effect, the cytokine IL-6, tumours, and hypermetabolism. Disturbance of any physiological process must enhance energy dissipation if the animal remains functioning normally, what explains multicausality, why "everything gives you cancer". The hypothesis thus comprises two newly invoked partial processes-diminished (grand) parental care and dissipation amplification-and results in a "selection against enhanced energy dissipation" which gives during evolution the benefit of energy conservation. Due to this benefit, cancer would essentially be an adaptation, and not a genetic disease, as assumed in the "somatic mutation theory". Cancer by somatic mutations is only a side process. The cancer adaptation hypothesis is substantiated by (1) cancer's extancy, (2) the failure of the somatic mutation theory, (3) cancer's initiation by a high temperature, (4) the interpretation of cancer's progression as a thermal process, and (5) the interpretation of tumours as organs that implement thermogenesis. The hypothesis could in principle be verified by monitoring in a population over several generations (1) the presence of dissipative genes, (2) the incidence of cancer, and (3) the beneficial effect of dissipative gene removal by cancer on starvation/famine survival.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Trevors JT. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis. Theory Biosci 2012; 131:225-9. [PMID: 22718039 DOI: 10.1007/s12064-012-0157-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/05/2012] [Indexed: 11/25/2022]
Abstract
The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbiology, School of Environmental Sciences, University of Guelph, 50 Stone Road, E., Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
4
|
Trevors J, Pollack G. Origin of microbial life hypothesis: A gel cytoplasm lacking a bilayer membrane, with infrared radiation producing exclusion zone (EZ) water, hydrogen as an energy source and thermosynthesis for bioenergetics. Biochimie 2012; 94:258-62. [DOI: 10.1016/j.biochi.2011.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
|
5
|
Erguven M, Bilir A, Yazihan N, Korkmaz S, Aktas E, Ovalioglu C, Dundar T, Seyithanoglu H. Imatinib mesylate decreases the cytotoxic effect of roscovitine on human glioblastoma cells in vitro and the role of midkine. Oncol Lett 2011; 3:200-208. [PMID: 22740881 DOI: 10.3892/ol.2011.434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/31/2011] [Indexed: 01/16/2023] Open
Abstract
The purpose of the present study was to overcome resistance to imatinib (IM) by combining it with roscovitine (ROSC) and to investigate whether or not midkine (MK) had an effect on this combination in the treatment of glioblastoma (GBL). Human T98 GBL cells were used to evaluate the effects of IM (10 μM), ROSC (200 μM) and their combination on the cell proliferation index, apoptotic index, the apoptotic protein and anti-apoptotic protein levels, and ultrastructure. All applications decreased the cell proliferation index and increased the apoptotic index, but ROSC was the most efficient drug and the second most efficient drug was IM. Notably, ROSC increased anti-apoptotic proteins levels (PDGFR-α, AQP-4, hTERT), COX-1 activity and ribosome numbers. The effects of ROSC on hTERT, MK, AQP-4 and MRP-1 levels and COX-1 activity were reported for the first time. ROSC induced the highest increase in caspase-3 levels. Autophagy was not involved in the activity of ROSC in GBL spheroids. The combination of IM with ROSC showed an antagonist effect in the treatment of human GBL cells. The combination group decreased certain anti-apoptotic protein levels (PDGFR-α, EGFR, p-gp, MRP-1 and MK), cAMP levels, COX-1 activity and apoptotic protein levels (caspase-3). However, it induced the highest increase in hTERT levels and COX-2 activity. Ribosome numbers were much lower than those in the ROSC group and no autophagic vacuole was observed. In conclusion, more investigations are required to identify the key regulatory components that are responsible for this antagonism; however, the determination of this combination therapy as a failure therapy may be precautionary for oncologists in the treatment of GBL patients and potentially may contribute to the efficacy of new therapeutic regimens.
Collapse
Affiliation(s)
- Mine Erguven
- Faculty of Medicine, Department of Biochemistry, Yeni Yüzyıl University, Istanbul
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Emergence of Animals from Heat Engines – Part 1. Before the Snowball Earths. ENTROPY 2009. [DOI: 10.3390/e11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Bradley RK, Holmes I. Evolutionary triplet models of structured RNA. PLoS Comput Biol 2009; 5:e1000483. [PMID: 19714212 PMCID: PMC2725318 DOI: 10.1371/journal.pcbi.1000483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 07/23/2009] [Indexed: 12/31/2022] Open
Abstract
The reconstruction and synthesis of ancestral RNAs is a feasible goal for paleogenetics. This will require new bioinformatics methods, including a robust statistical framework for reconstructing histories of substitutions, indels and structural changes. We describe a "transducer composition" algorithm for extending pairwise probabilistic models of RNA structural evolution to models of multiple sequences related by a phylogenetic tree. This algorithm draws on formal models of computational linguistics as well as the 1985 protosequence algorithm of David Sankoff. The output of the composition algorithm is a multiple-sequence stochastic context-free grammar. We describe dynamic programming algorithms, which are robust to null cycles and empty bifurcations, for parsing this grammar. Example applications include structural alignment of non-coding RNAs, propagation of structural information from an experimentally-characterized sequence to its homologs, and inference of the ancestral structure of a set of diverged RNAs. We implemented the above algorithms for a simple model of pairwise RNA structural evolution; in particular, the algorithms for maximum likelihood (ML) alignment of three known RNA structures and a known phylogeny and inference of the common ancestral structure. We compared this ML algorithm to a variety of related, but simpler, techniques, including ML alignment algorithms for simpler models that omitted various aspects of the full model and also a posterior-decoding alignment algorithm for one of the simpler models. In our tests, incorporation of basepair structure was the most important factor for accurate alignment inference; appropriate use of posterior-decoding was next; and fine details of the model were least important. Posterior-decoding heuristics can be substantially faster than exact phylogenetic inference, so this motivates the use of sum-over-pairs heuristics where possible (and approximate sum-over-pairs). For more exact probabilistic inference, we discuss the use of transducer composition for ML (or MCMC) inference on phylogenies, including possible ways to make the core operations tractable.
Collapse
Affiliation(s)
- Robert K. Bradley
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
| | - Ian Holmes
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Arata HF, Fujita H. Miniaturized thermocontrol devices enable analysis of biomolecular behavior on their timescales, second to millisecond. Integr Biol (Camb) 2009; 1:363-70. [PMID: 20023743 DOI: 10.1039/b901902b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To establish general-purpose methods and tools for biological experiments on a short time scale is an essential requirement for future research in molecular biology because most of the functions of living organisms at the molecular level take place on a time scale from 1-second to millisecond. Thermal control with on-chip micro-thermodevices is one of the strongest and most useful ways to realize biological experiments at molecular level on these time scales. Novel biological phenomena revealed by the experiments using micro-thermodevices on a 1-second and millisecond time scale will be shown for the proof. Finally, the advantages and impact of this methodology in molecular biology will be discussed.
Collapse
Affiliation(s)
- Hideyuki F Arata
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
9
|
Kim KS, Oh S, Yea SS, Yoon MY, Kim DE. Amplification of an RNA ligase ribozyme under alternating temperature conditions. FEBS Lett 2008; 582:2745-52. [DOI: 10.1016/j.febslet.2008.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/04/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
|
10
|
Sun FJ, Caetano-Anollés G. The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 2007; 66:21-35. [PMID: 18058157 DOI: 10.1007/s00239-007-9050-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 08/13/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
The evolutionary history of the two structural and functional domains of tRNA is controversial but harbors the secrets of early translation and the genetic code. To explore the origin and evolution of tRNA, we reconstructed phylogenetic trees directly from molecular structure. Forty-two structural characters describing the geometry of 571 tRNAs and three statistical parameters describing thermodynamic and mechanical features of molecules quantitatively were used to derive phylogenetic trees of molecules and molecular substructures. Trees of molecules failed to group tRNA according to amino acid specificity and did not reveal the tripartite nature of life, probably due to loss of phylogenetic signal or because tRNA diversification predated organismal diversification. Trees of substructures derived from both structural and statistical characters support the origin of tRNA in the acceptor arm and the hypothesis that the top half domain composed of acceptor and pseudouridine (TPsiC) arms is more ancient than the bottom half domain composed of dihydrouridine (DHU) and anticodon arms. This constitutes the cornerstone of the genomic tag hypothesis that postulates tRNAs were ancient telomeres in the RNA world. The trees of substructures suggest a model for the evolution of the major functional and structural components of tRNA. In this model, short RNA hairpins with stems homologous to the acceptor arm of present day tRNAs were extended with regions homologous to TPsiC and anticodon arms. The DHU arm was then incorporated into the resulting three-stemmed structure to form a proto-cloverleaf structure. The variable region was the last structural addition to the molecular repertoire of evolving tRNA substructures.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 332 NSRC, 1101 West Peabody Drive, Urbana, IL 61801, USA
| | | |
Collapse
|
11
|
Muller AWJ, Schulze-Makuch D. Thermal energy and the origin of life. ORIGINS LIFE EVOL B 2006; 36:177-89. [PMID: 16642267 DOI: 10.1007/s11084-005-9003-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/20/2005] [Indexed: 10/24/2022]
Abstract
Life has evolved on Earth with electromagnetic radiation (light), fermentable organic molecules, and oxidizable chemicals as sources of energy. Biological use of thermal energy has not been observed although heat, and the thermal gradients required to convert it into free energy, are ubiquitous and were even more abundant at the time of the origin of life on Earth. Nevertheless, Earth-organisms sense thermal energy, and in suitable environments may have gained the capability to use it as energy source. It has been proposed that the first organisms obtained their energy by a first protein named pF(1) that worked on a thermal variation of the binding change mechanism of today's ATP sythase enzyme. Organisms using thermosynthesis may still live where light or chemical energy sources are not available. Possible suitable examples are subsurface environments on Earth and in the outer Solar System, in particular the subsurface oceans of the icy satellites of Jupiter and Saturn.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Department of Geology, Washington State University, Pullman, WA 99164-2812, USA
| | | |
Collapse
|