1
|
Farias STD, Nunes-Alves AK, José M. From RNA to DNA: Emergence of reverse transcriptases from an ancestral RNA-dependent RNA polymerase. Biosystems 2024; 246:105345. [PMID: 39349132 DOI: 10.1016/j.biosystems.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The transition from RNA as the informational molecule of primordial biological systems to the DNA genomes of modern organisms represents one of the greatest evolutionary transitions in the history of life. One way to understand this transition is to comprehend the origin of the enzymes responsible for the metabolism of nucleic acid polymers. In the present work, we reconstructed the ancestral sequence of RNA-dependent DNA polymerase (RdDp) and modeled its structure. The data demonstrate that, in terms of primary sequence, the ancestral sequences exhibit characteristic elements of RdDp; however, structurally, they are more similar to RNA-dependent RNA polymerase (RdRp). The presented data suggest that RdDp may have originated through modifications and neofunctionalization from an RdRp-like ancestor.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, 58051-900, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK.
| | - Ana Karoline Nunes-Alves
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, 58051-900, Brazil
| | - Marco José
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK; Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, Mexico
| |
Collapse
|
2
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
3
|
Abstract
Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change-e.g. cultural evolution, and earliest life-acquired traits are retained; these domains do not face the problem that Darwin's theory was designed to solve. Lack of transmission of acquired traits occurs when germ cells are protected from environmental change, due to a self-assembly code used in two distinct ways: (i) actively interpreted during development to generate a soma, and (ii) passively copied without interpretation during reproduction to generate germ cells. Early life and cultural evolution appear not to involve a self-assembly code used in these two ways. We suggest that cumulative, adaptive change in these domains is due to a lower-fidelity evolutionary process, and model it using reflexively autocatalytic and foodset-generated networks. We refer to this more primitive evolutionary process as self-other reorganization (SOR) because it involves internal self-organizing and self-maintaining processes within entities, as well as interaction between entities. SOR encompasses learning but in general operates across groups. We discuss the relationship between SOR and Lamarckism, and illustrate a special case of SOR without variation.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia, Kelowna British Columbia, Canada
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
4
|
Abstract
Autocatalysis is essential for the origin of life and chemical evolution. However, the lack of a unified framework so far prevents a systematic study of autocatalysis. Here, we derive, from basic principles, general stoichiometric conditions for catalysis and autocatalysis in chemical reaction networks. This allows for a classification of minimal autocatalytic motifs called cores. While all known autocatalytic systems indeed contain minimal motifs, the classification also reveals hitherto unidentified motifs. We further examine conditions for kinetic viability of such networks, which depends on the autocatalytic motifs they contain and is notably increased by internal catalytic cycles. Finally, we show how this framework extends the range of conceivable autocatalytic systems, by applying our stoichiometric and kinetic analysis to autocatalysis emerging from coupled compartments. The unified approach to autocatalysis presented in this work lays a foundation toward the building of a systems-level theory of chemical evolution.
Collapse
|
5
|
Abstract
Background This essay highlights critical aspects of the plausibility of pre-Darwinian evolution. It is based on a critical review of some better-known open, far-from-equilibrium system-based scenarios supposed to explain processes that took place before Darwinian evolution had emerged and that resulted in the origin of the first systems capable of Darwinian evolution. The researchers’ responses to eight crucial questions are reviewed. The majority of the researchers claim that there would have been an evolutionary continuity between chemistry and “biology”. A key question is how did this evolution begin before Darwinian evolution had begun? In other words the question is whether pre-Darwinian evolution is plausible. Results Strengths and weaknesses of the reviewed scenarios are presented. They are distinguished between metabolism-first, replicator-first and combined metabolism-replicator models. The metabolism-first scenarios show major issues, the worst concerns heredity and chirality. Although the replicator-first scenarios answer the heredity question they have their own problems, notably chirality. Among the reviewed combined metabolism-replicator models, one shows the fewest issues. In particular, it seems to answer the chiral question, and eventually implies Darwinian evolution from the very beginning. Its main hypothesis needs to be validated with experimental data. Conclusion From this critical review it is that the concept of “pre-Darwinian evolution” appears questionable, in particular because it is unlikely if not impossible that any evolution in complexity over time may work without multiplication and heritability allowing the emergence of genetically and ecologically diverse lineages on which natural selection may operate. Only Darwinian evolution could have led to such an evolution. Thus, Pre-Darwinian evolution is not plausible according to the author. Surely, the answer to the question posed in the title is a prerequisite to the understanding of the origin of Darwinian evolution. Reviewers This article was reviewed by Purificacion Lopez-Garcia, Anthony Poole, Doron Lancet, and Thomas Dandekar.
Collapse
|
6
|
Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 2018; 15:20180159. [PMID: 30045888 PMCID: PMC6073634 DOI: 10.1098/rsif.2018.0159] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems-hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
Collapse
Affiliation(s)
- Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Zidovetzki
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Omer Markovitch
- Origins Center, Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
7
|
Witting L. The natural selection of metabolism and mass selects allometric transitions from prokaryotes to mammals. Theor Popul Biol 2017; 117:23-42. [DOI: 10.1016/j.tpb.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/31/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
|
8
|
Zhang Y, Barboiu M. Constitutional Dynamic Materials—Toward Natural Selection of Function. Chem Rev 2015; 116:809-34. [DOI: 10.1021/acs.chemrev.5b00168] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Zhang
- Adaptive Supramolecular Nanosystems
Group, Institut Européen des Membranes—UMR CNRS 5635, Place Eugène
Bataillon, CC 047, F-34095 Montpellier, France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems
Group, Institut Européen des Membranes—UMR CNRS 5635, Place Eugène
Bataillon, CC 047, F-34095 Montpellier, France
| |
Collapse
|
9
|
Pereira JA. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model. Biosystems 2014; 122:38-54. [PMID: 24971802 DOI: 10.1016/j.biosystems.2014.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 05/10/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance of the food source characteristics and evolutionary possibilities are discussed.
Collapse
Affiliation(s)
- José A Pereira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal; REQUIMTE/CEQUP - Centro de Química da Universidade do Porto, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.
| |
Collapse
|
10
|
Richter H. Fitness Landscapes: From Evolutionary Biology to Evolutionary Computation. RECENT ADVANCES IN THE THEORY AND APPLICATION OF FITNESS LANDSCAPES 2014. [DOI: 10.1007/978-3-642-41888-4_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Froese T, Virgo N, Ikegami T. Motility at the origin of life: its characterization and a model. ARTIFICIAL LIFE 2013; 20:55-76. [PMID: 23373982 DOI: 10.1162/artl_a_00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing replicator-first and metabolism-first approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an ximpoverished conception of the phenomenon of life. In particular, we argue that the new consensus has so far failed to consider the relevance of intermediate time scales. We propose that an adequate theory of life must account for the fact that all living beings are situated in at least four distinct time scales, which are typically associated with metabolism, motility, development, and evolution. In this view, self-movement, adaptive behavior, and morphological changes could have already been present at the origin of life. In order to illustrate this possibility, we analyze a minimal model of lifelike phenomena, namely, of precarious, individuated, dissipative structures that can be found in simple reaction-diffusion systems. Based on our analysis, we suggest that processes on intermediate time scales could have already been operative in prebiotic systems. They may have facilitated and constrained changes occurring in the faster- and slower-paced time scales of chemical self-individuation and evolution by natural selection, respectively.
Collapse
Affiliation(s)
- Tom Froese
- Universidad Nacional Autónoma de Mexico and, University of Tokyo
| | | | | |
Collapse
|
12
|
McGregor S, Vasas V, Husbands P, Fernando C. Evolution of associative learning in chemical networks. PLoS Comput Biol 2012; 8:e1002739. [PMID: 23133353 PMCID: PMC3486861 DOI: 10.1371/journal.pcbi.1002739] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning - the ability to detect correlated features of the environment - has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the 'memory traces' of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells.
Collapse
Affiliation(s)
- Simon McGregor
- Department of Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Vera Vasas
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Phil Husbands
- Department of Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Chrisantha Fernando
- School of Electronic Engineering and Computer Science (EECS), Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
13
|
Abstract
Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate') of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype), that sustains a molecular periphery (analogous to a phenotype). Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin.
Collapse
|
14
|
Egbert MD, Barandiaran XE, Di Paolo EA. Behavioral metabolution: the adaptive and evolutionary potential of metabolism-based chemotaxis. ARTIFICIAL LIFE 2011; 18:1-25. [PMID: 22035082 DOI: 10.1162/artl_a_00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We use a minimal model of metabolism-based chemotaxis to show how a coupling between metabolism and behavior can affect evolutionary dynamics in a process we refer to as behavioral metabolution. This mutual influence can function as an in-the-moment, intrinsic evaluation of the adaptive value of a novel situation, such as an encounter with a compound that activates new metabolic pathways. Our model demonstrates how changes to metabolic pathways can lead to improvement of behavioral strategies, and conversely, how behavior can contribute to the exploration and fixation of new metabolic pathways. These examples indicate the potentially important role that the interplay between behavior and metabolism could have played in shaping adaptive evolution in early life and protolife. We argue that the processes illustrated by these models can be interpreted as an unorthodox instantiation of the principles of evolution by random variation and selective retention. We then discuss how the interaction between metabolism and behavior can facilitate evolution through (i) increasing exposure to environmental variation, (ii) making more likely the fixation of some beneficial metabolic pathways, (iii) providing a mechanism for in-the-moment adaptation to changes in the environment and to changes in the organization of the organism itself, and (iv) generating conditions that are conducive to speciation.
Collapse
|
15
|
|
16
|
Arneth BM. Sequence variability and sequence evolution: an explanation of molecular polymorphisms and why many molecular structures can be preserved although they are not predominant. DNA Cell Biol 2010; 29:571-6. [PMID: 20629558 DOI: 10.1089/dna.2009.0942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The existence of many processes that regulate RNA expression poses a challenge to the idea that the cell is the culmination of a highly efficient interplay of individual proteins, each with specific, highly specialized functions. It will be demonstrated here the extent to which the cell may undergo evolutionary processes that also occur in the macrocosmos, specifically with reference to the rules of mutation and preservation. These molecular evolutionary processes could facilitate a better understanding of the development of molecular structures and the functioning of the cell and could give an explanation of the molecular polymorphisms and also explain why many molecular structures can be preserved although they are not predominant.
Collapse
Affiliation(s)
- Borros M Arneth
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
17
|
Luz Cárdenas M, Letelier JC, Gutierrez C, Cornish-Bowden A, Soto-Andrade J. Closure to efficient causation, computability and artificial life. J Theor Biol 2010; 263:79-92. [DOI: 10.1016/j.jtbi.2009.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/06/2009] [Accepted: 11/15/2009] [Indexed: 11/16/2022]
|
18
|
Wills PR. Informed Generation: Physical origin and biological evolution of genetic codescript interpreters. J Theor Biol 2009; 257:345-58. [DOI: 10.1016/j.jtbi.2008.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 11/18/2008] [Accepted: 12/17/2008] [Indexed: 11/26/2022]
|
19
|
Solé RV. Evolution and self-assembly of protocells. Int J Biochem Cell Biol 2008; 41:274-84. [PMID: 18951997 DOI: 10.1016/j.biocel.2008.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Cells define the minimal building blocks of life. How cellular life emerged and evolved implies to cross the boundary between living and nonliving matter. Here we explore this problem by presenting several relevant components of the whole picture involving chemistry, physics and natural selection. Available evidence suggests that the basic logic of life can be understood and eventually translated into synthetic forms of cellular life. A simple, physically sound model of information-free protocell replication suggests that the basic logic of how to couple metabolism and container can be more relevant than the specific set of parameters used, thus indicating that the emergence of cells might have been easier than we would expect.
Collapse
Affiliation(s)
- Ricard V Solé
- Complex Systems Lab (ICREA-UPF), Parc de Recerca Biomedica de Barcelona, Dr Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|