1
|
Pyrih J, Hammond M, Alves A, Dean S, Sunter JD, Wheeler RJ, Gull K, Lukeš J. Comprehensive sub-mitochondrial protein map of the parasitic protist Trypanosoma brucei defines critical features of organellar biology. Cell Rep 2023; 42:113083. [PMID: 37669165 DOI: 10.1016/j.celrep.2023.113083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
We have generated a high-confidence mitochondrial proteome (MitoTag) of the Trypanosoma brucei procyclic stage containing 1,239 proteins. For 337 of these, a mitochondrial localization had not been described before. We use the TrypTag dataset as a foundation and take advantage of the properties of the fluorescent protein tag that causes aberrant but fortuitous accumulation of tagged matrix and inner membrane proteins near the kinetoplast (mitochondrial DNA). Combined with transmembrane domain predictions, this characteristic allowed categorization of 1,053 proteins into mitochondrial sub-compartments, the detection of unique matrix-localized fucose and methionine synthesis, and the identification of new kinetoplast proteins, which showed kinetoplast-linked pyrimidine synthesis. Moreover, disruption of targeting signals by tagging allowed mapping of the mode of protein targeting to these sub-compartments, identifying a set of C-tail anchored outer mitochondrial membrane proteins and mitochondrial carriers likely employing multiple target peptides. This dataset represents a comprehensive, updated mapping of the mitochondrion.
Collapse
Affiliation(s)
- Jan Pyrih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Department of Biochemistry, University of Cambridge, Cambridge, UK; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | | | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
2
|
Pfau T, Christian N, Masakapalli SK, Sweetlove LJ, Poolman MG, Ebenhöh O. The intertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. Sci Rep 2018; 8:12504. [PMID: 30131500 PMCID: PMC6104047 DOI: 10.1038/s41598-018-30884-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/07/2018] [Indexed: 11/09/2022] Open
Abstract
Genome-scale metabolic network models can be used for various analyses including the prediction of metabolic responses to changes in the environment. Legumes are well known for their rhizobial symbiosis that introduces nitrogen into the global nutrient cycle. Here, we describe a fully compartmentalised, mass and charge-balanced, genome-scale model of the clover Medicago truncatula, which has been adopted as a model organism for legumes. We employed flux balance analysis to demonstrate that the network is capable of producing biomass components in experimentally observed proportions, during day and night. By connecting the plant model to a model of its rhizobial symbiont, Sinorhizobium meliloti, we were able to investigate the effects of the symbiosis on metabolic fluxes and plant growth and could demonstrate how oxygen availability influences metabolic exchanges between plant and symbiont, thus elucidating potential benefits of inter organism amino acid cycling. We thus provide a modelling framework, in which the interlinked metabolism of plants and nodules can be studied from a theoretical perspective.
Collapse
Affiliation(s)
- Thomas Pfau
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Nils Christian
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | - Shyam K Masakapalli
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mark G Poolman
- Department Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Oliver Ebenhöh
- Institute of Quantitative and Theoretical Biology, Cluster of Excellence on Plant Sciences CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
3
|
Cueto-Rojas HF, van Maris A, Wahl SA, Heijnen J. Thermodynamics-based design of microbial cell factories for anaerobic product formation. Trends Biotechnol 2015; 33:534-46. [DOI: 10.1016/j.tibtech.2015.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/20/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
|
4
|
Xin CP, Tholen D, Devloo V, Zhu XG. The benefits of photorespiratory bypasses: how can they work? PLANT PHYSIOLOGY 2015; 167:574-85. [PMID: 25516604 PMCID: PMC4326737 DOI: 10.1104/pp.114.248013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bypassing the photorespiratory pathway is regarded as a way to increase carbon assimilation and, correspondingly, biomass production in C3 crops. Here, the benefits of three published photorespiratory bypass strategies are systemically explored using a systems-modeling approach. Our analysis shows that full decarboxylation of glycolate during photorespiration would decrease photosynthesis, because a large amount of the released CO2 escapes back to the atmosphere. Furthermore, we show that photosynthesis can be enhanced by lowering the energy demands of photorespiration and by relocating photorespiratory CO2 release into the chloroplasts. The conductance of the chloroplast membranes to CO2 is a key feature determining the benefit of the relocation of photorespiratory CO2 release. Although our results indicate that the benefit of photorespiratory bypasses can be improved by increasing sedoheptulose bisphosphatase activity and/or increasing the flux through the bypass, the effectiveness of such approaches depends on the complex regulation between photorespiration and other metabolic pathways.
Collapse
Affiliation(s)
- Chang-Peng Xin
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Danny Tholen
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Vincent Devloo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| | - Xin-Guang Zhu
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
| |
Collapse
|
5
|
Price AH, Norton GJ, Salt DE, Ebenhoeh O, Meharg AA, Meharg C, Islam MR, Sarma RN, Dasgupta T, Ismail AM, McNally KL, Zhang H, Dodd IC, Davies WJ. Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer? Food Energy Secur 2013. [DOI: 10.1002/fes3.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Adam H. Price
- Institute of Biological and Environmental Science University of Aberdeen AB24 3UU Aberdeen U.K
| | - Gareth J. Norton
- Institute of Biological and Environmental Science University of Aberdeen AB24 3UU Aberdeen U.K
| | - David E. Salt
- Institute of Biological and Environmental Science University of Aberdeen AB24 3UU Aberdeen U.K
| | - Oliver Ebenhoeh
- Institute of Complex Systems and Mathematical Biology Department of Physics University of Aberdeen Aberdeen AB24 3UE U.K
| | - Andrew A. Meharg
- Institute for Global Food Security Queen's University Belfast David Keir Building Malone Road Belfast BT9 5BN U.K
| | - Caroline Meharg
- Institute for Global Food Security Queen's University Belfast David Keir Building Malone Road Belfast BT9 5BN U.K
| | - M. Rafiqul Islam
- Department of Soil Science Bangladesh Agricultural University Mymensingh Bangladesh
| | - Ramen N. Sarma
- Department of Plant Breeding and Genetics Assam Agricultural University Jorhat 785013 Assam India
| | - Tapash Dasgupta
- Department of Genetics and Plant Breeding Calcutta University 35 B.C. Road Kolkata 700 019 West Bengal India
| | - Abdelbagi M. Ismail
- International Rice Research Institute (IRRI) DAPO 7777 Metro Manila 1031 The Philippines
| | - Kenneth L. McNally
- International Rice Research Institute (IRRI) DAPO 7777 Metro Manila 1031 The Philippines
| | - Hao Zhang
- Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ U.K
| | - Ian C. Dodd
- Centre for Sustainable Agriculture Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ U.K
| | - William J. Davies
- Centre for Sustainable Agriculture Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ U.K
| |
Collapse
|
6
|
Peterhansel C, Krause K, Braun HP, Espie GS, Fernie AR, Hanson DT, Keech O, Maurino VG, Mielewczik M, Sage RF. Engineering photorespiration: current state and future possibilities. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:754-758. [PMID: 23121076 DOI: 10.1111/j.1438-8677.2012.00681.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Reduction of flux through photorespiration has been viewed as a major way to improve crop carbon fixation and yield since the energy-consuming reactions associated with this pathway were discovered. This view has been supported by the biomasses increases observed in model species that expressed artificial bypass reactions to photorespiration. Here, we present an overview about the major current attempts to reduce photorespiratory losses in crop species and provide suggestions for future research priorities.
Collapse
Affiliation(s)
- C Peterhansel
- Leibniz University Hannover, Institute of Botany, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Larhlimi A, Basler G, Grimbs S, Selbig J, Nikoloski Z. Stoichiometric capacitance reveals the theoretical capabilities of metabolic networks. ACTA ACUST UNITED AC 2013; 28:i502-i508. [PMID: 22962473 PMCID: PMC3436808 DOI: 10.1093/bioinformatics/bts381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Motivation: Metabolic engineering aims at modulating the capabilities of metabolic networks by changing the activity of biochemical reactions. The existing constraint-based approaches for metabolic engineering have proven useful, but are limited only to reactions catalogued in various pathway databases. Results: We consider the alternative of designing synthetic strategies which can be used not only to characterize the maximum theoretically possible product yield but also to engineer networks with optimal conversion capability by using a suitable biochemically feasible reaction called ‘stoichiometric capacitance’. In addition, we provide a theoretical solution for decomposing a given stoichiometric capacitance over a set of known enzymatic reactions. We determine the stoichiometric capacitance for genome-scale metabolic networks of 10 organisms from different kingdoms of life and examine its implications for the alterations in flux variability patterns. Our empirical findings suggest that the theoretical capacity of metabolic networks comes at a cost of dramatic system's changes. Contact:larhlimi@mpimp-golm.mpg.de, or nikoloski@mpimp-golm.mpg.de Supplementary Information:Supplementary tables are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abdelhalim Larhlimi
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| | | | | | | | | |
Collapse
|