1
|
Hosoda K, Seno S, Kamiura R, Murakami N, Kondoh M. Biodiversity and Constrained Information Dynamics in Ecosystems: A Framework for Living Systems. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1624. [PMID: 38136504 PMCID: PMC10742641 DOI: 10.3390/e25121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
The increase in ecosystem biodiversity can be perceived as one of the universal processes converting energy into information across a wide range of living systems. This study delves into the dynamics of living systems, highlighting the distinction between ex post adaptation, typically associated with natural selection, and its proactive counterpart, ex ante adaptability. Through coalescence experiments using synthetic ecosystems, we (i) quantified ecosystem stability, (ii) identified correlations between some biodiversity indexes and the stability, (iii) proposed a mechanism for increasing biodiversity through moderate inter-ecosystem interactions, and (iv) inferred that the information carrier of ecosystems is species composition, or merged genomic information. Additionally, it was suggested that (v) changes in ecosystems are constrained to a low-dimensional state space, with three distinct alteration trajectories-fluctuations, rapid environmental responses, and long-term changes-converging into this state space in common. These findings suggest that daily fluctuations may predict broader ecosystem changes. Our experimental insights, coupled with an exploration of living systems' information dynamics from an ecosystem perspective, enhance our predictive capabilities for natural ecosystem behavior, providing a universal framework for understanding a broad spectrum of living systems.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka 565-0871, Japan
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Rikuto Kamiura
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
| | - Naomi Murakami
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
| |
Collapse
|
2
|
Horas EL, Metzger SM, Platzer B, Kelly JB, Becks L. Context-dependent costs and benefits of endosymbiotic interactions in a ciliate-algae system. Environ Microbiol 2022; 24:5924-5935. [PMID: 35799468 DOI: 10.1111/1462-2920.16112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Endosymbiosis, an interaction between two species where one lives within the other, has evolved multiple times independently, but the underlying mechanisms remain unclear. Evolutionary theory suggests that for an endosymbiotic interaction to remain stable over time, births of both partners should be higher than their deaths in symbiosis and deaths of both partners should be higher than their births when living independently. However, experimentally measuring this can be difficult and conclusions tend to focus on the host. Using a ciliate-algal system (Paramecium bursaria host and Chlorella endosymbionts), we estimated the benefits and costs of endosymbiosis for both organisms using fitness measurements in different biotic environments to test under which environmental conditions the net effects of the interaction were positive for both partners. We found that the net effects of harbouring endosymbionts were positive for the ciliate hosts as it allowed them to survive in conditions of low-quality bacteria food. The algae benefitted by being endosymbiotic when predators such as the hosts were present, but the net effects were dependent on the total density of hosts, decreasing as hosts densities increased. Overall, we show that including context-dependency of endosymbiosis is essential in understanding how these interactions have evolved.
Collapse
Affiliation(s)
- Elena L Horas
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Sarah M Metzger
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Platzer
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Joseph B Kelly
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Lutz Becks
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Symbiogenesis is driven through hierarchical reorganization of an ecosystem under closed or semi-closed conditions. Biosystems 2021; 205:104427. [PMID: 33857536 DOI: 10.1016/j.biosystems.2021.104427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
Ecosystems generate selective environments and function as sources of various metabolic systems for symbiogenesis. In this study, we have explored how symbiogenesis occurs in the living world, from a holistic perspective, by observing a long-term experimental culture of an ecosystem model (CET microcosm) and using related findings in laboratory and field studies of endosymbiosis between auto- (photo-) and heterotrophic organisms. The results obtained suggest that symbiogenesis can occur in the mature stages of semi-closed ecosystems and lead to a new ecosystem-oriented perspective of symbiogenesis. Symbiogenesis is an aspect of ecosystem evolution in which whole ecosystem dynamics generate selective conditions operating on the component species, favoring symbiotic associations among some of them. The development of symbiotic associations then modifies the organization and material/energy flow structure of the ecosystem, which, in turn, modifies their selective environments.
Collapse
|
4
|
Sørensen MES, Lowe CD, Minter EJA, Wood AJ, Cameron DD, Brockhurst MA. The role of exploitation in the establishment of mutualistic microbial symbioses. FEMS Microbiol Lett 2020; 366:5528313. [PMID: 31271421 PMCID: PMC6638607 DOI: 10.1093/femsle/fnz148] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Evolutionary theory suggests that the conditions required for the establishment of mutualistic symbioses through mutualism alone are highly restrictive, often requiring the evolution of complex stabilising mechanisms. Exploitation, whereby initially the host benefits at the expense of its symbiotic partner and mutual benefits evolve subsequently through trade-offs, offers an arguably simpler route to the establishment of mutualistic symbiosis. In this review, we discuss the theoretical and experimental evidence supporting a role for host exploitation in the establishment and evolution of mutualistic microbial symbioses, including data from both extant and experimentally evolved symbioses. We conclude that exploitation rather than mutualism may often explain the origin of mutualistic microbial symbioses.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Chris D Lowe
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Ewan J A Minter
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - A Jamie Wood
- Department of Biology, University of York, York YO10 5DD, UK.,Department of Mathematics, University of York, York YO10 5DD, UK
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Khanh Tran HN, Youn UJ, Kim JA, Chae H, Kim S, Min BS. Glycerols and fatty acids isolated from Micractinium sp. KSF0031. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2019.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Experimental evolution in photoautotrophic microorganisms as a means of enhancing chloroplast functions. Essays Biochem 2018; 62:77-84. [PMID: 28887328 DOI: 10.1042/ebc20170010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Abstract
The term 'experimental evolution' refers to short-term evolutionary experiments with microorganisms under controlled conditions in which selection is expected to occur. In combination with whole-genome sequencing and genetic engineering, the method has become a powerful tool to study evolutionary mechanisms and engineer new microbial variants. It has been most extensively used in the model species Escherichia coli and Saccharomyces cerevisiae, but more recently photosynthetic microorganisms have been subjected to experimental evolution. In such assays, strains were generated that had become more tolerant to certain abiotic environmental factors or evolved new traits during co-propagation with other organisms. These strains were viable under conditions that were lethal to the non-adapted progenitor and in a few cases, the causative mutations were identified. Because cyanobacteria like Synechocystis or green algae like Chlamydomonas reinhardtii share many features with crop plants - which are not amenable to such experiments - experimental evolution with photosynthetic microorganisms has the potential to identify novel targets for improving the capacity of plants to acclimate to environmental change. Here, I provide a survey of the experiments performed so far in cyanobacteria and green algae, focusing on Synechocystis and C. reinhardtii, and discuss the promise and the challenges of such approaches.
Collapse
|
7
|
Pitsch G, Adamec L, Dirren S, Nitsche F, Šimek K, Sirová D, Posch T. The Green Tetrahymena utriculariae n. sp. (Ciliophora, Oligohymenophorea) with Its Endosymbiotic Algae (Micractinium sp.), Living in Traps of a Carnivorous Aquatic Plant. J Eukaryot Microbiol 2016; 64:322-335. [PMID: 27613221 DOI: 10.1111/jeu.12369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 11/30/2022]
Abstract
The genus Tetrahymena (Ciliophora, Oligohymenophorea) probably represents the best studied ciliate genus. At present, more than forty species have been described. All are colorless, i.e. they do not harbor symbiotic algae, and as aerobes they need at least microaerobic habitats. Here, we present the morphological and molecular description of the first green representative, Tetrahymena utriculariae n. sp., living in symbiosis with endosymbiotic algae identified as Micractinium sp. (Chlorophyta). The full life cycle of the ciliate species is documented, including trophonts and theronts, conjugating cells, resting cysts and dividers. This species has been discovered in an exotic habitat, namely in traps of the carnivorous aquatic plant Utricularia reflexa (originating from Okavango Delta, Botswana). Green ciliates live as commensals of the plant in this anoxic habitat. Ciliates are bacterivorous, however, symbiosis with algae is needed to satisfy cell metabolism but also to gain oxygen from symbionts. When ciliates are cultivated outside their natural habitat under aerobic conditions and fed with saturating bacterial food, they gradually become aposymbiotic. Based on phylogenetic analyses of 18S rRNA and mitochondrial cox1 genes T. utriculariae forms a sister group to Tetrahymena thermophila.
Collapse
Affiliation(s)
- Gianna Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, 8802, Switzerland
| | - Lubomír Adamec
- Institute of Botany CAS, Section of Plant Ecology, Třeboň, 379 82, Czech Republic
| | - Sebastian Dirren
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, 8802, Switzerland
| | - Frank Nitsche
- Institute for Zoology, General Ecology, Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Karel Šimek
- Biology Centre CAS, Institute of Hydrobiology, České Budějovice, 370 05, Czech Republic
| | - Dagmara Sirová
- Biology Centre CAS, Institute of Hydrobiology, České Budějovice, 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, 8802, Switzerland
| |
Collapse
|
8
|
Šimek K, Pitsch G, Salcher MM, Sirová D, Shabarova T, Adamec L, Posch T. Ecological Traits of the Algae-Bearing Tetrahymena utriculariae (Ciliophora) from Traps of the Aquatic Carnivorous Plant Utricularia reflexa. J Eukaryot Microbiol 2016; 64:336-348. [PMID: 27613086 DOI: 10.1111/jeu.12368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/17/2016] [Accepted: 08/26/2016] [Indexed: 11/27/2022]
Abstract
Trap fluid of aquatic carnivorous plants of the genus Utricularia hosts specific microbiomes consisting of commensal pro- and eukaryotes of largely unknown ecology. We examined the characteristics and dynamics of bacteria and the three dominant eukaryotes, i.e. the algae-bearing ciliate Tetrahymena utriculariae (Ciliophora), a green flagellate Euglena agilis (Euglenophyta), and the alga Scenedesmus alternans (Chlorophyta), associated with the traps of Utricularia reflexa. Our study focused on ecological traits and life strategies of the highly abundant ciliate whose biomass by far exceeds that of other eukaryotes and bacteria independent of the trap age. The ciliate was the only bacterivore in the traps, driving rapid turnover of bacterial standing stock. However, given the large size of the ciliate and the cell-specific uptake rates of bacteria we estimated that bacterivory alone would likely be insufficient to support its apparent rapid growth in traps. We suggest that mixotrophy based on algal symbionts contributes significantly to the diet and survival strategy of the ciliate in the extreme (anaerobic, low pH) trap-fluid environment. We propose a revised concept of major microbial interactions in the trap fluid where ciliate bacterivory plays a central role in regeneration of nutrients bound in rapidly growing bacterial biomass.
Collapse
Affiliation(s)
- Karel Šimek
- Biology Centre CAS, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice, 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Gianna Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, 8802, Switzerland
| | - Michaela M Salcher
- Biology Centre CAS, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice, 370 05, Czech Republic
| | - Dagmara Sirová
- Biology Centre CAS, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice, 370 05, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Tanja Shabarova
- Biology Centre CAS, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice, 370 05, Czech Republic
| | - Lubomír Adamec
- Institute of Botany CAS, Section of Plant Ecology, Třeboň, 379 82, Czech Republic
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, 8802, Switzerland
| |
Collapse
|
9
|
Hosoda K, Tsuda S, Kadowaki K, Nakamura Y, Nakano T, Ishii K. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems. Biosystems 2015; 140:28-34. [PMID: 26747638 DOI: 10.1016/j.biosystems.2015.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan.
| | - Soichiro Tsuda
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Kohmei Kadowaki
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Yutaka Nakamura
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| | - Tadashi Nakano
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| | - Kojiro Ishii
- Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Differentiation of a free-living alga into forms with ecto- and endosymbiotic associations with heterotrophic organisms in a 5-year microcosm culture. Biosystems 2015; 131:9-21. [DOI: 10.1016/j.biosystems.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/24/2022]
|