1
|
Spadafora C. The epigenetic basis of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:57-69. [PMID: 36720315 DOI: 10.1016/j.pbiomolbio.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
An increasing body of data are revealing key roles of epigenetics in evolutionary processes. The scope of this manuscript is to assemble in a coherent frame experimental evidence supporting a role of epigenetic factors and networks, active during embryogenesis, in orchestrating variation-inducing phenomena underlying evolution, seen as a global process. This process unfolds over two crucial levels: i) a flow of RNA-based information - predominantly small regulatory RNAs released from somatic cells exposed to environmental stimuli - taken up by spermatozoa and delivered to oocytes at fertilization and ii) the highly permissive and variation-prone environments offered by zygotes and totipotent early embryos. Totipotent embryos provide a variety of biological tools favouring the emergence of evolutionarily significant phenotypic novelties driven by RNA information. Under this light, neither random genomic mutations, nor the sieving role of natural selection are required, as the sperm-delivered RNA cargo conveys specific information and acts as "phenotypic-inducer" of defined environmentally acquired traits.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.
| |
Collapse
|
2
|
Rust J. Phenotype-first hypotheses, spandrels and early metazoan evolution. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:48. [PMID: 36257998 DOI: 10.1007/s40656-022-00531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Against the neo-Darwinian assumption that genetic factors are the principal source of variation upon which natural selection operates, a phenotype-first hypothesis strikes us as revolutionary because development would seem to constitute an independent source of variability. Richard Watson and his co-authors have argued that developmental memory constitutes one such variety of phenotypic variability. While this version of the phenotype-first hypothesis is especially well-suited for the late metazoan context, where animals have a sufficient history of selection from which to draw, appeals to developmental memory seem less plausible in the evolutionary context of the early metazoans. I provide an interpretation of Stuart Newman's account of deep metazoan phylogenesis that suggests that spandrels are, in addition to developmental memory, an important reservoir of phenotypic variability. I conclude by arguing that Gerd Müller's "side-effect hypothesis" is an illuminating generalization of the proposed non-Watsonian version of the phenotype-first hypothesis.
Collapse
Affiliation(s)
- Joshua Rust
- Stetson University, Unit 8250, 104-C Elizabeth Hall, 421 North Woodland Boulevard, DeLand, Florida, 32723, USA.
| |
Collapse
|
3
|
Igamberdiev AU. Book Review. Biosystems 2022. [DOI: 10.1016/j.biosystems.2022.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Szilágyi A, Szabó P, Santos M, Szathmáry E. Phenotypes to remember: Evolutionary developmental memory capacity and robustness. PLoS Comput Biol 2020; 16:e1008425. [PMID: 33253184 PMCID: PMC7703877 DOI: 10.1371/journal.pcbi.1008425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 12/02/2022] Open
Abstract
There is increased awareness of the possibility of developmental memories resulting from evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous formalism raising the important question of productive analogies in principles, processes and performance. We investigate the formation and persistence of various developmental memories of past phenotypes asking how the number of remembered past phenotypes scales with network size, to what extent memories stored form by Hebbian-like rules, and how robust these developmental "devo-engrams" are against networks perturbations (graceful degradation). The analogy between neural and genetic regulatory networks is not superficial in that it allows knowledge transfer between fields that used to be developed separately from each other. Known examples of spectacular phenotypic radiations could partly be accounted for in such terms.
Collapse
Affiliation(s)
- András Szilágyi
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
| | - Péter Szabó
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Mauro Santos
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Barcelona, Spain
| | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
| |
Collapse
|
5
|
Evolutionary genetic analysis of unassigned peptidase clan-associated microbial virulence and pathogenesis. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00529-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Koza A, Kusmierska A, McLaughlin K, Moshynets O, Spiers AJ. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. FEMS Microbiol Lett 2018; 364:3850210. [PMID: 28535292 DOI: 10.1093/femsle/fnx109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Combined experimental evolutionary and molecular biology approaches have been used to investigate the adaptive radiation of Pseudomonas fluorescens SBW25 in static microcosms leading to the colonisation of the air-liquid interface by biofilm-forming mutants such as the Wrinkly Spreader (WS). In these microcosms, the ecosystem engineering of the early wild-type colonists establishes the niche space for subsequent WS evolution and colonisation. Random WS mutations occurring in the developing population that deregulate diguanylate cyclases and c-di-GMP homeostasis result in cellulose-based biofilms at the air-liquid interface. These structures allow Wrinkly Spreaders to intercept O2 diffusing into the liquid column and limit the growth of competitors lower down. As the biofilm matures, competition increasingly occurs between WS lineages, and niche divergence within the biofilm may support further diversification before system failure when the structure finally sinks. A combination of pleiotropic and epistasis effects, as well as secondary mutations, may explain variations in WS phenotype and fitness. Understanding how mutations subvert regulatory networks to express intrinsic genome potential and key innovations providing a selective advantage in novel environments is key to understanding the versatility of bacteria, and how selection and ecological opportunity can rapidly lead to substantive changes in phenotype and in community structure and function.
Collapse
Affiliation(s)
- Anna Koza
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Anna Kusmierska
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Kimberley McLaughlin
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Olena Moshynets
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kiev 03143, Ukraine
| | - Andrew J Spiers
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
7
|
Abrhámová K, Nemčko F, Libus J, Převorovský M, Hálová M, Půta F, Folk P. Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast. PLoS One 2018; 13:e0190685. [PMID: 29304067 PMCID: PMC5755908 DOI: 10.1371/journal.pone.0190685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023] Open
Abstract
Ribosomal protein genes (RPGs) in Saccharomyces cerevisiae are a remarkable regulatory group that may serve as a model for understanding genetic redundancy in evolutionary adaptations. Most RPGs exist as pairs of highly conserved functional paralogs with divergent untranslated regions and introns. We examined the roles of introns in strains with various combinations of intron and gene deletions in RPL22, RPL2, RPL16, RPL37, RPL17, RPS0, and RPS18 paralog pairs. We found that introns inhibited the expression of their genes in the RPL22 pair, with the RPL22B intron conferring a much stronger effect. While the WT RPL22A/RPL22B mRNA ratio was 93/7, the rpl22aΔi/RPL22B and RPL22A/rpl22bΔi ratios were >99/<1 and 60/40, respectively. The intron in RPL2A stimulated the expression of its own gene, but the removal of the other introns had little effect on expression of the corresponding gene pair. Rpl22 protein abundances corresponded to changes in mRNAs. Using splicing reporters containing endogenous intron sequences, we demonstrated that these effects were due to the inhibition of splicing by Rpl22 proteins but not by their RNA-binding mutant versions. Indeed, only WT Rpl22A/Rpl22B proteins (but not the mutants) interacted in a yeast three-hybrid system with an RPL22B intronic region between bp 165 and 236. Transcriptome analysis showed that both the total level of Rpl22 and the A/B ratio were important for maintaining the WT phenotype. The data presented here support the contention that the Rpl22B protein has a paralog-specific role. The RPL22 singleton of Kluyveromyces lactis, which did not undergo whole genome duplication, also responded to Rpl22-mediated inhibition in K. lactis cells. Vice versa, the overproduction of the K. lactis protein reduced the expression of RPL22A/B in S. cerevisiae. The extraribosomal function of of the K. lactis Rpl22 suggests that the loop regulating RPL22 paralogs of S. cerevisiae evolved from autoregulation.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Filip Nemčko
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Libus
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Hálová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Sharov AA. Composite Agency: Semiotics of Modularity and Guiding Interactions. BIOSEMIOTICS 2017; 10:157-178. [PMID: 29218071 PMCID: PMC5714302 DOI: 10.1007/s12304-017-9301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/16/2017] [Indexed: 05/08/2023]
Abstract
Principles of constructivism are used here to explore how organisms develop tools, subagents, scaffolds, signs, and adaptations. Here I discuss reasons why organisms have composite nature and include diverse subagents that interact in partially cooperating and partially conflicting ways. Such modularity is necessary for efficient and robust functionality, including mutual construction and adaptability at various time scales. Subagents interact via material and semiotic relations, some of which force or prescribe actions of partners. Other interactions, which I call "guiding", do not have immediate effects and do not disrupt the evolution and learning capacity of partner agents. However, they modify the extent of learning and evolutionary possibilities of partners via establishment of scaffolds and constraints. As a result, subagents construct reciprocal scaffolding for each other to rebalance their communal evolution and learning. As an example, I discuss guiding interactions between the body and mind of animals, where the pain system adjusts mind-based learning to the physical and physiological constraints of the body. Reciprocal effects of mind and behaviors on the development and evolution of the body includes the effects of Lamarck and Baldwin.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Laboratory of Genetics, 251 Bayview Blvd., Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Sharov AA. Evolutionary biosemiotics and multilevel construction networks. BIOSEMIOTICS 2016; 9:399-416. [PMID: 28163801 PMCID: PMC5283393 DOI: 10.1007/s12304-016-9269-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/08/2016] [Indexed: 05/23/2023]
Abstract
In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition. Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Laboratory of Genetics, 251 Bayview Blvd., Baltimore, MD 21224, USA
| |
Collapse
|
10
|
Seymour V. The Human-Nature Relationship and Its Impact on Health: A Critical Review. Front Public Health 2016; 4:260. [PMID: 27917378 PMCID: PMC5114301 DOI: 10.3389/fpubh.2016.00260] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/03/2016] [Indexed: 02/05/2023] Open
Abstract
Within the past four decades, research has been increasingly drawn toward understanding whether there is a link between the changing human-nature relationship and its impact on people's health. However, to examine whether there is a link requires research of its breadth and underlying mechanisms from an interdisciplinary approach. This article begins by reviewing the debates concerning the human-nature relationship, which are then critiqued and redefined from an interdisciplinary perspective. The concept and chronological history of "health" is then explored, based on the World Health Organization's definition. Combining these concepts, the human-nature relationship and its impact on human's health are then explored through a developing conceptual model. It is argued that using an interdisciplinary perspective can facilitate a deeper understanding of the complexities involved for attaining optimal health at the human-environmental interface.
Collapse
Affiliation(s)
- Valentine Seymour
- Department of Civil, Environmental and Geomatic Engineering, University College London , London , UK
| |
Collapse
|
11
|
Affifi R. The Semiosis of "Side Effects" in Genetic Interventions. BIOSEMIOTICS 2016; 9:345-364. [PMID: 28066514 PMCID: PMC5179580 DOI: 10.1007/s12304-016-9274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Genetic interventions, which include transgenic engineering, gene editing, and other forms of genome modification aimed at altering the information "in" the genetic code, are rapidly increasing in power and scale. Biosemiotics offers unique tools for understanding the nature, risks, scope, and prospects of such technologies, though few in the community have turned their attention specifically in this direction. Bruni (2003, 2008) is an important exception. In this paper, I examine how we frame the concept of "side effects" that result from genetic interventions and how the concept stands up to current perspectives of the role of organism activity in development. I propose that once the role of living systems in constructing and modifying the informational value of their various developmental resources is taken into account, the concept of a "side effect" will need to be significantly revised. Far from merely a disturbance brought about in a senseless albeit complex system, a biosemiotic view would take "side effects" as at least sometimes the organism's active re-organization in order to accommodate or make use of novelty. This insight is nascent in the work of developmental plasticity and niche construction theory (West-Eberhard 2003; Odling-Smee et al. 2003), but it is brought into sharper focus by the explicitly interpretive perspective offered by biosemiotics. Understanding the "side effects" of genetic interventions depends in part on being able to articulate when and where unexpected consequences are a result of semiotic activity at various levels within the system. While a semiotic interpretation of "side effects" puts into question the naive attitude that would see all unintended side effects as indications of disturbance in system functionality, it certainly does not imply that such side effects are of no concern for the viability of the organisms in the system. As we shall see, the fact that such interventions do not respect the translation of information that occurs in multi-level biological systems ensures that disruption is still likely. But it does unprivilege the human agent as the sole generator of meaning and information in the products of biotechnology, with important consequences on how we understand our relationship with other species.
Collapse
|
12
|
Sharov AA. Coenzyme world model of the origin of life. Biosystems 2016; 144:8-17. [PMID: 26968100 PMCID: PMC4875852 DOI: 10.1016/j.biosystems.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Abstract
The origin of life means the emergence of heritable and evolvable self-reproduction. However the mechanisms of primordial heredity were different from those in contemporary cells. Here I argue that primordial life had no nucleic acids; instead heritable signs were represented by isolated catalytically active self-reproducing molecules, similar to extant coenzymes, which presumably colonized surfaces of oil droplets in water. The model further assumes that coenzyme-like molecules (CLMs) changed surface properties of oil droplets (e.g., by oxidizing terminal carbons), and in this way created and sustained favorable conditions for their own self-reproduction. Such niche-dependent self-reproduction is a necessary condition for cooperation between different kinds of CLMs because they have to coexist in the same oil droplets and either succeed or perish together. Additional kinds of hereditary molecules were acquired via coalescence of oil droplets carrying different kinds of CLMs or via modification of already existing CLMs. Eventually, polymerization of CLMs became controlled by other polymers used as templates; and this kind of template-based synthesis eventually resulted in the emergence of RNA-like replicons. Apparently, oil droplets transformed into the outer membrane of cells via engulfing water, stabilization of the surface, and osmoregulation. In result, the metabolism was internalized allowing cells to accumulate free-floating resources (e.g., animoacids, ATP), which was a necessary condition for the development of protein synthesis. Thus, life originated from simple but already functional molecules, and its gradual evolution towards higher complexity was driven by cooperation and natural selection.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Genetics Laboratory, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
13
|
Sharov AA. Evolution of natural agents: preservation, advance, and emergence of functional information. BIOSEMIOTICS 2016; 9:103-129. [PMID: 27525048 PMCID: PMC4978442 DOI: 10.1007/s12304-015-9250-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/28/2015] [Indexed: 05/23/2023]
Abstract
Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents.
Collapse
Affiliation(s)
- Alexei A. Sharov
- National Institute on Aging, Laboratory of Genetics and Genomics, 251 Bayview Blvd. Baltimore, MD 21224, USA, Phone: 1-410-558-8556, Fax: 1-410-558-8331
| |
Collapse
|
14
|
Sharov A, Maran T, Tønnessen M. Comprehending the Semiosis of Evolution. BIOSEMIOTICS 2016; 9:1-6. [PMID: 27547273 PMCID: PMC4988684 DOI: 10.1007/s12304-016-9262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Alexei Sharov
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Timo Maran
- Department of Semiotics, University of Tartu, Tartu, Estonia
| | - Morten Tønnessen
- Department of Social Studies and Department of Health Studies, University of Stavanger, Stavanger, Norway
| |
Collapse
|
15
|
van Hateren JH. The Natural Emergence of (Bio)Semiosic Phenomena. BIOSEMIOTICS 2015; 8:403-419. [PMID: 26640604 PMCID: PMC4661186 DOI: 10.1007/s12304-015-9241-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/30/2015] [Indexed: 06/05/2023]
Abstract
Biological organisms appear to have agency, goals, and meaningful behaviour. One possibility is that this is mere appearance, where such properties are not real, but only 'as if' consequences of the physiological structure of organisms. Another possibility is that these properties are real, as emerging from the organism's structure and from how the organism interacts with its environment. Here I will discuss a recent theory showing that the latter position is most likely correct, and argue that the theory is largely consistent with the basics of the field of biosemiotics. The theory can be represented as a triad that resembles the semiotic triad proposed by Peirce, which connects a sign with its object through a process of interpretation. In the theory presented, the sign is an internalized version of fitness (i.e., expected reproductive rate) which refers to the true fitness through a feedback loop that in effect produces interpretation. The feedback loop entangles deterministic and stochastic forms of causation in such a way that genuine agency, goal-directedness, and their associated meaning emerge. It produces a strong form of emergence not reducible to its constituents. The result is that novel phenomena arise that are real and necessary components for a complete understanding of living organisms.
Collapse
Affiliation(s)
- J. H. van Hateren
- Johann Bernouilli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands
| |
Collapse
|